Nonlocal transport of heat in equilibrium drift-diffusion systems

被引:1
|
作者
Stabler, Florian [1 ]
Sukhorukov, Eugene [1 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
关键词
Compendex;
D O I
10.1103/PhysRevB.107.045403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The amount of heat an integer quantum Hall edge state can carry in equilibrium is quantized in universal units of the heat flux quantum Jq = pi k2 12h over bar T 2 per edge state. We address the question of how heat transport B in realistic one-dimensional devices can differ from the usual chiral Luttinger liquid theory. We show that a local measurement can reveal a nonquantized amount of heat carried by the edge states, despite a globally equilibrium situation. More specifically, we report a heat enhancement effect in edge states interacting with Ohmic reservoirs in the presence of nonlocal interactions or chirality-breaking diffusive currents. In contrast to a nonequilibrium, nonlinear drag effect, we report an equilibrium, linear phenomenon. The chirality of the edge states creates additional correlations between the reservoirs, reflected in a higher-than-quantum heat flux in the chiral channel. We show that for different types of coupling the enhancement can be understood as static or dynamical back action of the reservoirs on the chiral channel. We show that our results qualitatively hold by replacing the dissipative Ohmic reservoirs by an energy-conserving mesoscopic capacitor and consider the respective transmission lines for different types of interaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Potential Theory for Nonlocal Drift-Diffusion Equations
    Nguyen, Quoc-Hung
    Nowak, Simon
    Sire, Yannick
    Weidner, Marvin
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (06)
  • [2] Modeling of drift-diffusion systems
    Holger Stephan
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 33 - 53
  • [3] Modeling of drift-diffusion systems
    Stephan, Holger
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01): : 33 - 53
  • [4] ON THE REGULARITY ISSUES OF A CLASS OF DRIFT-DIFFUSION EQUATIONS WITH NONLOCAL DIFFUSION
    Miao, Changxing
    Xue, Liutang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (04) : 2927 - 2970
  • [5] Convergent Lagrangian Discretization for Drift-Diffusion with Nonlocal Aggregation
    Matthes, Daniel
    Soellner, Benjamin
    INNOVATIVE ALGORITHMS AND ANALYSIS, 2017, 16 : 313 - 351
  • [6] Asymmetry of nonlocal dissipation: From drift-diffusion to hydrodynamics
    Tikhonov, K. S.
    Gornyi, I., V
    Kachorovskii, V. Yu
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2019, 100 (20)
  • [7] The approximation problem for drift-diffusion systems
    Jerome, JW
    SIAM REVIEW, 1995, 37 (04) : 552 - 572
  • [8] Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems
    Bessemoulin-Chatard, Marianne
    Chainais-Hillairet, Claire
    JOURNAL OF NUMERICAL MATHEMATICS, 2017, 25 (03) : 147 - 168
  • [9] ON THE DIFFERENTIABILITY ISSUE OF THE DRIFT-DIFFUSION EQUATION WITH NONLOCAL LEVY-TYPE DIFFUSION
    Xue, Liutang
    Ye, Zhuan
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 293 (02) : 471 - 510
  • [10] Quantum energy-transport and drift-diffusion models
    Degond, P
    Méhats, F
    Ringhofer, C
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) : 625 - 667