Nonlocal transport of heat in equilibrium drift-diffusion systems

被引:1
|
作者
Stabler, Florian [1 ]
Sukhorukov, Eugene [1 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
关键词
Compendex;
D O I
10.1103/PhysRevB.107.045403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The amount of heat an integer quantum Hall edge state can carry in equilibrium is quantized in universal units of the heat flux quantum Jq = pi k2 12h over bar T 2 per edge state. We address the question of how heat transport B in realistic one-dimensional devices can differ from the usual chiral Luttinger liquid theory. We show that a local measurement can reveal a nonquantized amount of heat carried by the edge states, despite a globally equilibrium situation. More specifically, we report a heat enhancement effect in edge states interacting with Ohmic reservoirs in the presence of nonlocal interactions or chirality-breaking diffusive currents. In contrast to a nonequilibrium, nonlinear drag effect, we report an equilibrium, linear phenomenon. The chirality of the edge states creates additional correlations between the reservoirs, reflected in a higher-than-quantum heat flux in the chiral channel. We show that for different types of coupling the enhancement can be understood as static or dynamical back action of the reservoirs on the chiral channel. We show that our results qualitatively hold by replacing the dissipative Ohmic reservoirs by an energy-conserving mesoscopic capacitor and consider the respective transmission lines for different types of interaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On the stationary quantum drift-diffusion model
    N. Ben Abdallah
    A. Unterreiter
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 251 - 275
  • [42] On a Drift-Diffusion System for Semiconductor Devices
    Granero-Belinchon, Rafael
    ANNALES HENRI POINCARE, 2016, 17 (12): : 3473 - 3498
  • [43] Drift-diffusion equation for suspended sediment
    Zhong, DY
    Zhang, HW
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON RIVER SEDIMENTATION, VOLS 1-4, 2004, : 1391 - 1394
  • [44] Drift-diffusion simulation of InSb devices
    Sijercic, E
    Mueller, K
    Pejcinovic, B
    MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 43 - 46
  • [45] The bipolar quantum drift-diffusion model
    Xiu Qing Chen
    Li Chen
    Acta Mathematica Sinica, English Series, 2009, 25
  • [46] Quantum corrections in the drift-diffusion model
    Hosseini, Seyed Ebrahim
    Faez, Rahim
    Yazdi, Hadi Sadoghi
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007, 46 (11): : 7247 - 7250
  • [47] On the stationary quantum drift-diffusion model
    Ben Abdallah, N
    Unterreiter, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 251 - 275
  • [48] Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach
    MARCO SALDUTTI
    ALBERTO TIBALDI
    FEDERICA CAPPELLUTI
    MARIANGELA GIOANNINI
    Photonics Research , 2020, (08) : 1388 - 1397
  • [49] Diffusive to drift-diffusion crossover of spin transport in the low-field regime
    Miah, M. Idrish
    APPLIED PHYSICS LETTERS, 2008, 92 (09)
  • [50] Modeling of oxide-based ECRAM programming by drift-diffusion ion transport
    Baldo, Matteo
    Ielmini, Daniele
    2021 IEEE INTERNATIONAL MEMORY WORKSHOP (IMW), 2021, : 21 - 24