Two-dimensional Dirac particles in a Poschl-Teller waveguide

被引:37
|
作者
Hartmann, R. R. [1 ]
Portnoi, M. E. [2 ,3 ]
机构
[1] De La Salle Univ, Dept Phys, 2401 Taft Ave, Manila 0922, Philippines
[2] Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England
[3] Univ Fed Rio Grande do Norte, Int Inst Phys, Natal, RN, Brazil
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
欧盟地平线“2020”;
关键词
LEVINSON THEOREM; TRANSPORT-PROPERTIES; MODES; SCATTERING; RESONANCES;
D O I
10.1038/s41598-017-11411-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Poschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the minimum strength of the potential required to hold a bound state of zero energy. Applications for smooth electron waveguides in 2D Dirac-Weyl systems are discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Group approach to the quantization of the Poschl-Teller dynamics
    Aldaya, V
    Guerrero, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (31): : 6939 - 6953
  • [32] Dynamical algebras for Poschl-Teller Hamiltonian hierarchies
    Kuru, S.
    Negro, J.
    ANNALS OF PHYSICS, 2009, 324 (12) : 2548 - 2560
  • [33] Complexified Poschl-Teller II potential model
    Jia, CS
    Sun, Y
    Li, Y
    PHYSICS LETTERS A, 2002, 305 (05) : 231 - 238
  • [34] Scattering and Bound States of the Dirac Particle for q-Parameter Hyperbolic Poschl-Teller Potential
    Onyeaju, M. C.
    Ikot, A. N.
    Onate, C. A.
    Obong, H. P.
    Ebomwonyi, O.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (05) : 541 - 551
  • [35] Matrix elements for the modified Poschl-Teller potential
    Zuniga, J
    Alacid, M
    Requena, A
    Bastida, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 57 (01) : 43 - 51
  • [36] Quasinormal modes of generalized Poschl-Teller potentials
    Cardona, A. F.
    Molina, C.
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (24)
  • [37] PSEUDOSPIN SYMMETRY IN TRIGONOMETRIC POSCHL-TELLER POTENTIAL
    Candemir, Nuray
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2012, 21 (06):
  • [38] Dynamical algebras of general two-parametric Poschl-Teller Hamiltonians
    Calzada, J. A.
    Kuru, S.
    Negro, J.
    del Olmo, M. A.
    ANNALS OF PHYSICS, 2012, 327 (03) : 808 - 822
  • [39] Ladder operators for the modified Poschl-Teller potential
    Dong, SH
    Lemus, R
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 86 (03) : 265 - 272
  • [40] On the completeness of the quasinormal modes of the Poschl-Teller potential
    Beyer, HR
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (02) : 397 - 423