Two-dimensional Dirac particles in a Poschl-Teller waveguide

被引:37
|
作者
Hartmann, R. R. [1 ]
Portnoi, M. E. [2 ,3 ]
机构
[1] De La Salle Univ, Dept Phys, 2401 Taft Ave, Manila 0922, Philippines
[2] Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England
[3] Univ Fed Rio Grande do Norte, Int Inst Phys, Natal, RN, Brazil
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
欧盟地平线“2020”;
关键词
LEVINSON THEOREM; TRANSPORT-PROPERTIES; MODES; SCATTERING; RESONANCES;
D O I
10.1038/s41598-017-11411-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Poschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are determined via the solutions of a simple transcendental equation. For the symmetric case, the eigenfunctions of the supercritical states are expressed as spheroidal wave functions, and approximate analytical expressions are obtained for the corresponding eigenvalues. A universal condition for any square integrable symmetric potential is obtained for the minimum strength of the potential required to hold a bound state of zero energy. Applications for smooth electron waveguides in 2D Dirac-Weyl systems are discussed.
引用
收藏
页数:10
相关论文
共 50 条