Modelling complex geological circular data with the projected normal distribution and mixtures of von Mises distributions

被引:13
|
作者
Lark, R. M. [1 ]
Clifford, D. [2 ]
Waters, C. N. [1 ]
机构
[1] British Geol Survey, Keyworth NG12 5GG, Notts, England
[2] CSIRO Computat Informat Ecosci Precinct, Brisbane, Qld 4001, Australia
关键词
PREFERRED ORIENTATION; LIKELIHOOD;
D O I
10.5194/se-5-631-2014
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Circular data are commonly encountered in the earth sciences and statistical descriptions and inferences about such data are necessary in structural geology. In this paper we compare two statistical distributions appropriate for complex circular data sets: the mixture of von Mises and the projected normal distribution. We show how the number of components in a mixture of von Mises distribution may be chosen, and how one may choose between the projected normal distribution and the mixture of von Mises for a particular data set. We illustrate these methods with a few structural geological data, showing how the fitted models can complement geological interpretation and permit statistical inference. One of our data sets suggests a special case of the projected normal distribution which we discuss briefly.
引用
收藏
页码:631 / 639
页数:9
相关论文
共 50 条
  • [21] Spatial Fading Correlation Model using Mixtures of Von Mises Fisher Distributions
    Mammasis, Konstantinos
    Stewart, Robert W.
    Thompson, John S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (04) : 2046 - 2055
  • [22] movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions
    Hornik, Kurt
    Gruen, Bettina
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 58 (10): : 1 - 31
  • [23] Cusum control for data following the von Mises distribution
    Hawkins, Douglas M.
    Lombard, F.
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (08) : 1319 - 1332
  • [24] Bayesian hidden Markov modelling using circular-linear general projected normal distribution
    Mastrantonio, Gianluca
    Maruotti, Antonello
    Jona-Lasinio, Giovanna
    ENVIRONMETRICS, 2015, 26 (02) : 145 - 158
  • [25] Unsupervised segmentation based on Von Mises circular distributions for orientation estimation in textured images
    Da Costa, Jean-Pierre
    Galland, Frederic
    Roueff, Antoine
    Germain, Christian
    JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (02)
  • [26] K-means plus plus for Mixtures of von Mises-Fisher Distributions
    Mash'al, Mohamadreza
    Hosseini, Reshad
    2015 7TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2015,
  • [27] Self-updating clustering algorithm for estimating the parameters in mixtures of von Mises distributions
    Hung, Wen-Liang
    Chang-Chien, Shou-Jen
    Yang, Miin-Shen
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (10) : 2259 - 2274
  • [28] Bayesian inference for mixtures of von Mises distributions using reversible jump MCMC sampler
    Mulder, Kees
    Jongsma, Pieter
    Klugkist, Irene
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (09) : 1539 - 1556
  • [29] Unsupervised segmentation based on Von Mises circular distributions for orientation estimation in textured images
    Da Costa, Jean-Pierre
    Galland, Frederic
    Roueff, Antoine
    Germain, Christian
    TENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2011, 8000
  • [30] MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions
    Wallace, CS
    Dowe, DL
    STATISTICS AND COMPUTING, 2000, 10 (01) : 73 - 83