Bayesian inference for mixtures of von Mises distributions using reversible jump MCMC sampler

被引:4
|
作者
Mulder, Kees [1 ]
Jongsma, Pieter [1 ]
Klugkist, Irene [1 ]
机构
[1] Univ Utrecht, Utrecht, Netherlands
关键词
Markov chain Monte Carlo; circular statistics; von Mises; mixture models; FITTING MIXTURES; MARKOV-CHAINS; COMPUTATION; HOMOGENEITY;
D O I
10.1080/00949655.2020.1740997
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Circular data are encountered in a variety of fields. A dataset on music listening behaviour throughout the day motivates development of models for multi-modal circular data where the number of modes is not known a priori. To fit a mixture model with an unknown number of modes, the reversible jump Metropolis-Hastings MCMC algorithm is adapted for circular data and presented. The performance of this sampler is investigated in a simulation study. At small-to-medium sample sizes , the number of components is uncertain. At larger sample sizes the estimation of the number of components is accurate. Application to the music listening data shows interpretable results that correspond with intuition.
引用
收藏
页码:1539 / 1556
页数:18
相关论文
共 50 条
  • [1] Bayesian inference by reversible jump MCMC for clustering based on finite generalized inverted Dirichlet mixtures
    Sami Bourouis
    Faisal R. Al-Osaimi
    Nizar Bouguila
    Hassen Sallay
    Fahd Aldosari
    Mohamed Al Mashrgy
    Soft Computing, 2019, 23 : 5799 - 5813
  • [2] Bayesian inference by reversible jump MCMC for clustering based on finite generalized inverted Dirichlet mixtures
    Bourouis, Sami
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    Sallay, Hassen
    Aldosari, Fahd
    Al Mashrgy, Mohamed
    SOFT COMPUTING, 2019, 23 (14) : 5799 - 5813
  • [3] Reversible Jump MCMC in mixtures of normal distributions with the same component means
    Papastamoulis, Panagiods
    Iliopoulos, George
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 900 - 911
  • [4] Joint Detection and Estimation of Noisy Sinusoids using Bayesian Inference with Reversible Jump MCMC Algorithm
    Ustundag, D.
    SIGNAL PROCESSING SYSTEMS, 2009, : 61 - 66
  • [5] A bayesian approach to map QTLs using reversible jump MCMC
    da Silva, Joseane Padilha
    Leandro, Roseli Aparecida
    CIENCIA E AGROTECNOLOGIA, 2009, 33 (04): : 1061 - 1070
  • [6] A reversible jump MCMC sampler for object detection in image processing
    Ortner, M
    Descombes, X
    Zerubia, J
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2004, 2006, : 389 - +
  • [7] Asymmetric Gaussian Mixtures with Reversible Jump MCMC
    Fu, Shuai
    Bouguila, Nizar
    2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [8] SOME MIXTURES OF VON MISES DISTRIBUTIONS
    GUPTA, D
    SOUTH AFRICAN STATISTICAL JOURNAL, 1976, 10 (01) : 69 - 75
  • [9] A fully Bayesian model based on reversible jump MCMC and finite Beta mixtures for clustering
    Bouguila, Nizar
    Elguebaly, Tarek
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) : 5946 - 5959
  • [10] Bayesian Volterra system identification using reversible jump MCMC algorithm
    Karakus, O.
    Kuruoglu, E. E.
    Altinkaya, M. A.
    SIGNAL PROCESSING, 2017, 141 : 125 - 136