More Than Incremental: Harnessing Machine Learning to Predict Breast Cancer Risk

被引:1
|
作者
Grimm, Lars J. [1 ]
Plichta, Jennifer K. [2 ]
Hwang, E. Shelley [2 ]
机构
[1] Duke Univ, Dept Radiol, Durham, NC 27706 USA
[2] Duke Univ, Dept Surg, Durham, NC 27706 USA
关键词
ARTIFICIAL-INTELLIGENCE; MAMMOGRAPHY;
D O I
10.1200/JCO.21.02733
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
[No abstract available]
引用
收藏
页码:1713 / +
页数:6
相关论文
共 50 条
  • [31] Machine Learning Models to Predict Bone Metastasis Risk in Patients With Lung Cancer
    So, Kevin Wang Leong
    Leung, Evan Mang Ching
    Ng, Tommy
    Tsui, Rachel
    Cheung, Jason Pui Yin
    Choi, Siu-Wai
    CANCER MEDICINE, 2024, 13 (22):
  • [32] Comparison of machine learning models to predict the risk of breast cancer-related lymphedema among breast cancer survivors: a cross-sectional study in China
    Du, Jiali
    Yang, Jing
    Yang, Qing
    Zhang, Xin
    Yuan, Ling
    Fu, Bing
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [33] Harnessing Machine Learning to Predict MoS2 Solid Lubricant Performance
    Vogel, Dayton J.
    Babuska, Tomas F.
    Mings, Alexander
    Macdonell, Peter A.
    Curry, John F.
    Larson, Steven R.
    Dugger, Michael T.
    TRIBOLOGY LETTERS, 2025, 73 (01)
  • [34] Using Machine Learning algorithms for breast cancer risk prediction and diagnosis
    Bharat, Anusha
    Pooja, N.
    Reddy, R. Anishka
    2018 3RD INTERNATIONAL CONFERENCE ON CIRCUITS, CONTROL, COMMUNICATION AND COMPUTING (I4C), 2018,
  • [35] Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis
    Asri, Hiba
    Mousannif, Hajar
    Al Moatassime, Hassan
    Noel, Thomas
    7TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2016) / THE 6TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2016) / AFFILIATED WORKSHOPS, 2016, 83 : 1064 - 1069
  • [36] Interpretation of machine learning methods for the prediction of breast and prostate cancer risk
    Klie, Adam
    Talwar, James
    Pagadala, Meghana
    Carter, Hannah
    CANCER RESEARCH, 2022, 82 (12)
  • [37] A Machine Learning Approach for Breast Cancer Risk Prediction in Digital Mammography
    Angelone, Francesca
    Ponsiglione, Alfonso Maria
    Ricciardi, Carlo
    Belfiore, Maria Paola
    Gatta, Gianluca
    Grassi, Roberto
    Amato, Francesco
    Sansone, Mario
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [38] Breast cancer risk prediction using machine learning: a systematic review
    Hussain, Sadam
    Ali, Mansoor
    Naseem, Usman
    Nezhadmoghadam, Fahimeh
    Jatoi, Munsif Ali
    Gulliver, T. Aaron
    Tamez-Pena, Jose Gerardo
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [39] Metabolomics by NMR Combined with Machine Learning to Predict Neoadjuvant Chemotherapy Response for Breast Cancer
    Cardoso, Marcella R.
    Silva, Alex Ap Rosini
    Talarico, Maria Cecilia R.
    Sanches, Pedro H. Godoy
    Sforca, Mauricio L.
    Rocco, Silvana A.
    Rezende, Luciana M.
    Quintero, Melissa
    Costa, Tassia B. B. C.
    Viana, Lais R.
    Canevarolo, Rafael R.
    Ferracini, Amanda C.
    Ramalho, Susana
    Gutierrez, Junier Marrero
    Guimaraes, Fernando
    Tasic, Ljubica
    Tata, Alessandra
    Sarian, Luis O.
    Cheng, Leo L.
    Porcari, Andreia M.
    Derchain, Sophie F. M.
    CANCERS, 2022, 14 (20)
  • [40] Using Different Machine Learning Techniques to Predict Recurrent Breast Cancer at Young Age
    Wu, Yan-Kuen
    Lu, Yen-Chiao Angel
    Lu, Chi-Jie
    Sun, Chih Cheng
    Journal of Quality, 2022, 29 (03): : 196 - 207