More Than Incremental: Harnessing Machine Learning to Predict Breast Cancer Risk

被引:1
|
作者
Grimm, Lars J. [1 ]
Plichta, Jennifer K. [2 ]
Hwang, E. Shelley [2 ]
机构
[1] Duke Univ, Dept Radiol, Durham, NC 27706 USA
[2] Duke Univ, Dept Surg, Durham, NC 27706 USA
关键词
ARTIFICIAL-INTELLIGENCE; MAMMOGRAPHY;
D O I
10.1200/JCO.21.02733
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
[No abstract available]
引用
收藏
页码:1713 / +
页数:6
相关论文
共 50 条
  • [21] Novel models by machine learning to predict prognosis of breast cancer brain metastases
    Chaofan Li
    Mengjie Liu
    Yinbin Zhang
    Yusheng Wang
    Jia Li
    Shiyu Sun
    Xuanyu Liu
    Huizi Wu
    Cong Feng
    Peizhuo Yao
    Yiwei Jia
    Yu Zhang
    Xinyu Wei
    Fei Wu
    Chong Du
    Xixi Zhao
    Shuqun Zhang
    Jingkun Qu
    Journal of Translational Medicine, 21
  • [22] Comparative Analysis to Predict Breast Cancer using Machine Learning Algorithms: A Survey
    Thomas, Tanishk
    Pradhan, Nitesh
    Dhaka, Vijaypal Singh
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 192 - 196
  • [23] A Machine Learning Model to Predict the Triple Negative Breast Cancer Immune Subtype
    Chen, Zihao
    Wang, Maoli
    De Wilde, Rudy Leon
    Feng, Ruifa
    Su, Mingqiang
    Torres-de la Roche, Luz Angela
    Shi, Wenjie
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [24] Novel models by machine learning to predict prognosis of breast cancer brain metastases
    Li, Chaofan
    Liu, Mengjie
    Zhang, Yinbin
    Wang, Yusheng
    Li, Jia
    Sun, Shiyu
    Liu, Xuanyu
    Wu, Huizi
    Feng, Cong
    Yao, Peizhuo
    Jia, Yiwei
    Zhang, Yu
    Wei, Xinyu
    Wu, Fei
    Du, Chong
    Zhao, Xixi
    Zhang, Shuqun
    Qu, Jingkun
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [25] A Comparative Study of Machine Learning Techniques to Predict Types of Breast Cancer Recurrence
    Chakkouch, Meryem
    Ertel, Merouane
    Mengad, Aziz
    Amali, Said
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 296 - 302
  • [26] Novel models based on machine learning to predict the prognosis of metaplastic breast cancer
    Zhang, Yinghui
    An, Wenxin
    Wang, Cong
    Liu, Xiaolei
    Zhang, Qihong
    Zhang, Yue
    Cheng, Shaoqiang
    BREAST, 2025, 79
  • [27] MRI is more sensitive than mammography for screening women at risk for breast cancer
    Kriege, M.
    Brekelmans, C. T.
    Boetes, C.
    Besnard, P. E.
    Zonderland, H. M.
    Obdeijn, I. M.
    IMAGERIE DE LA FEMME, 2005, 15 (03) : 179 - 179
  • [28] Is weight more informative than body mass index for breast cancer risk
    Ye, Zhoufeng
    Dite, Gillian
    Hopper, John
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 : 259 - 259
  • [29] Novel models by machine learning to predict the risk of cardiac disease-specific death in young patients with breast cancer
    Li, Yi
    Li, Handong
    Ye, Xuan
    Zhu, Zhigang
    Qiu, Yixuan
    DISCOVER ONCOLOGY, 2024, 15 (01)
  • [30] Machine Learning in Tribology-More than Buzzwords?
    Tremmel, Stephan
    Marian, Max
    LUBRICANTS, 2022, 10 (04)