On the convergence of Σn=1∞f(nx) for measurable functions

被引:6
|
作者
Buczolich, Z [1 ]
Mauldin, RD
机构
[1] Eotvos Lorand Univ, Dept Anal, Budapest, Hungary
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1112/S0025579300007804
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Questions of Haight and of Weizsacker are answered in the following result. There exists a measurable function f: (0, +infinity)-->{0, 1} and two non-empty intervals I-F, I-infinity subset of [1/2, 1) such that Sigma (infinity)(n = 1),f (nx) = +infinity for every x is an element ofI(infinity), and Sigma (infinity)(n = 1)f(nx) < +<infinity> for almost every x is an element ofI(F). The function f may be taken to be the characteristic function of an open set E.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 50 条