On the convergence of Σn=1∞f(nx) for measurable functions

被引:6
|
作者
Buczolich, Z [1 ]
Mauldin, RD
机构
[1] Eotvos Lorand Univ, Dept Anal, Budapest, Hungary
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1112/S0025579300007804
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Questions of Haight and of Weizsacker are answered in the following result. There exists a measurable function f: (0, +infinity)-->{0, 1} and two non-empty intervals I-F, I-infinity subset of [1/2, 1) such that Sigma (infinity)(n = 1),f (nx) = +infinity for every x is an element ofI(infinity), and Sigma (infinity)(n = 1)f(nx) < +<infinity> for almost every x is an element ofI(F). The function f may be taken to be the characteristic function of an open set E.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 50 条
  • [21] Multidimensional sliding window pringsheim convergence for measurable functions
    Savas, Rabia
    Patterson, Richard F.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 689 - 698
  • [22] p-q-convergence of sequences of measurable functions
    Papachristodoulos, C.
    Papanastassiou, N.
    Wilczynski, W.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (12) : 1478 - 1492
  • [23] Convergence of sequence of measurable functions on fuzzy measure spaces
    Li, J
    Yasuda, M
    Jiang, QS
    Suzuki, H
    Wang, ZY
    Klir, GJ
    FUZZY SETS AND SYSTEMS, 1997, 87 (03) : 317 - 323
  • [24] On p-Convergence in Measure of a Sequence of Measurable Functions
    Boccuto, A.
    Papachristodoulos, Ch.
    Papanastassiou, N.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [25] Multidimensional sliding window pringsheim convergence for measurable functions
    Rabia Savaş
    Richard F. Patterson
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 689 - 698
  • [26] Lacunary statistical and sliding window convergence for measurable functions
    Connor, J.
    Savas, E.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 416 - 432
  • [27] Lacunary Statistical and Sliding Window Convergence for Measurable Functions
    Connor, Jeff
    Savas, Ekrem
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 782 - 784
  • [28] MEASURABLE FUNCTIONS .1.
    TAKAHASH.M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 47 (01): : 25 - 28
  • [29] Fundamental convergence of sequences of measurable functions on fuzzy measure space
    Ha, MH
    Wang, XZ
    Wu, CX
    FUZZY SETS AND SYSTEMS, 1998, 95 (01) : 77 - 81
  • [30] Order continuity of fuzzy measure and convergence of measurable functions sequence
    Li, J
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 170 - 171