On the convergence of Σn=1∞f(nx) for measurable functions

被引:6
|
作者
Buczolich, Z [1 ]
Mauldin, RD
机构
[1] Eotvos Lorand Univ, Dept Anal, Budapest, Hungary
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1112/S0025579300007804
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Questions of Haight and of Weizsacker are answered in the following result. There exists a measurable function f: (0, +infinity)-->{0, 1} and two non-empty intervals I-F, I-infinity subset of [1/2, 1) such that Sigma (infinity)(n = 1),f (nx) = +infinity for every x is an element ofI(infinity), and Sigma (infinity)(n = 1)f(nx) < +<infinity> for almost every x is an element ofI(F). The function f may be taken to be the characteristic function of an open set E.
引用
收藏
页码:337 / 341
页数:5
相关论文
共 50 条
  • [2] CONVERGENCE OF SERIES IN F-FIXED SPACES OF MEASURABLE FUNCTIONS
    COSTE, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (02): : 131 - &
  • [3] CONVERGENCE OF SEQUENCES OF MEASURABLE FUNCTIONS
    WAGNER, E
    WILCZYNSKI, W
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (1-2): : 125 - 128
  • [4] CONVERGENCE OF MEASURABLE RANDOM FUNCTIONS
    GRINBLAT, LS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (02) : 322 - 325
  • [5] Rearrangement and convergence in spaces of measurable functions
    Caponetti, D.
    Trombetta, A.
    Trombetta, G.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [6] Convergence of measurable functions in the sense of density
    Maya Altınok
    Mehmet Küçükaslan
    A. Kerem Ünay
    The Journal of Analysis, 2023, 31 : 1487 - 1510
  • [7] Convergence of measurable functions in the sense of density
    Altinok, Maya
    Kucukaslan, Mehmet
    Unay, A. Kerem
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 1487 - 1510
  • [8] Rearrangement and Convergence in Spaces of Measurable Functions
    D Caponetti
    A Trombetta
    G Trombetta
    Journal of Inequalities and Applications, 2007
  • [9] CONVERGENCE ALMOST EVERYWHERE OF MEASURABLE FUNCTIONS
    BUCCHIONI, D
    GOLDMAN, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1087 - 1089
  • [10] CONVERGENCE OF SERIES ON (F(TAU-NX)) INFINITY N=0 SYSTEMS
    KASYANCHUK, AV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (04): : 29 - 33