Bilayer MoS2 on silicon for higher terahertz amplitude modulation

被引:5
|
作者
Jakhar, Alka [1 ]
Kumar, Prabhat [2 ]
Husain, Sajid [3 ]
Dhyani, Veerendra [1 ]
Chouksey, Abhilasha [4 ]
Rai, Prashant Kumar [4 ]
Rawat, J. S. [4 ]
Das, Samaresh [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Appl Res Elect, New Delhi 110016, India
[2] Czech Acad Sci, Inst Phys, Dept Thin Films & Nanostruct, Cukrovarnicka 10-112, Prague 16200, Czech Republic
[3] Univ Paris Saclay, CNRS, Thales, Unite Mixte Phys, F-91767 Palaiseau, France
[4] Def Res & Dev Org, Nanotechnol Grp, New Delhi, India
来源
NANO EXPRESS | 2021年 / 2卷 / 04期
关键词
two-dimensional transition metal dichalcogenide; modulator; modulation depth; terahertz;
D O I
10.1088/2632-959X/ac1ef6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The terahertz (THz) amplitude modulation has been experimentally demonstrated by employing bilayer molybdenum disulfide (MoS2) on high-resistivity silicon (Si). The Raman spectroscopy and x-ray photoelectron spectra confirm the formation of bilayer MoS2 film. The THz transmission measurements are carried out using a continuous wave (CW) frequency-domain THz system. This reveals the higher modulation depth covering wide THz spectra of 0.1-1 THz at low optical pumping power. The modulation depth up to 72.3% at 0.1 THz and 62.8% at 0.9 THz under low power optical excitation is achieved. After annealing, the strong built-in electric field is induced at the MoS2-Si interface due to p-type doping in MoS2. This improves modulation depth to 86.4% and 79.7%, respectively. The finite-difference time-domain (FDTD) based numerical simulations match well with the experimental results. The higher modulation depth at low optical power, broadband response, low insertion losses, and simplicity in the design are the key attributes of this THz modulator.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Ultrafast charge dynamics and photoluminescence in bilayer MoS2
    Ud Din, Naseem
    Turkowski, Volodymyr
    Rahman, Talat S.
    2D MATERIALS, 2021, 8 (02)
  • [32] Analysis of admittance measurements of MOS capacitors on CVD grown bilayer MoS2
    Gaur, Abhinav
    Chiappe, Daniele
    Lin, Dennis
    Cott, Daire
    Asselberghs, Inge
    Heyns, Marc
    Radu, Iuliana
    2D MATERIALS, 2019, 6 (03)
  • [33] MODULATION SPECTROSCOPY ON MOS2 AND MOSE2
    MEINHOLD, H
    WEISER, G
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 73 (01): : 105 - 115
  • [34] The modulation of terahertz photoconductivity in CVD grown n-doped monolayer MoS2 with gas adsorption
    Xing, Xiao
    Zhao, Litao
    Zhan, Zeyu
    Lin, Xian
    Yu, Yang
    Jin, Zuanming
    Liu, Weimin
    Zhang, Wenjing
    Ma, Guohong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (24)
  • [35] Electronic Transport in Bilayer MoS2 Encapsulated in HfO2
    Matis, Bernard R.
    Garces, Nelson Y.
    Cleveland, Erin R.
    Houston, Brian H.
    Baldwin, Jeffrey W.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) : 27995 - 28001
  • [36] Microtribological performance of Au-MoS2 nanocomposite and Au/MoS2 bilayer coatings
    Stoyanov, Pantcho
    Gupta, Shivani
    Chromik, Richard R.
    Lince, Jeffrey R.
    TRIBOLOGY INTERNATIONAL, 2012, 52 : 144 - 152
  • [37] Suppression of the shear Raman mode in defective bilayer MoS2
    Maguire, Pierce
    Downing, Clive
    Jadwiszczak, Jakub
    O'Brien, Maria
    Keane, Darragh
    McManus, John B.
    Duesberg, Georg S.
    Nicolosi, Valeria
    McEvoy, Niall
    Zhang, Hongzhou
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (06)
  • [38] Bilayer MoS2 quantum dots with tunable magnetism and spin
    Yang, Hongping
    Ouyang, Wengen
    Yan, Xingxu
    Li, Zuocheng
    Yu, Rong
    Yuan, Wenjuan
    Luo, Jun
    Zhu, Jing
    AIP ADVANCES, 2018, 8 (11)
  • [39] Band structure of the MoS2 bilayer with adsorbed and intercalated Na
    Yakovkin, I. N.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (12): : 2693 - 2697
  • [40] Weak localization in boron nitride encapsulated bilayer MoS2
    Papadopoulos, Nikos
    Watanabe, Kenji
    Taniguchi, Takashi
    van der Zant, Herre S. J.
    Steele, Gary A.
    PHYSICAL REVIEW B, 2019, 99 (11)