Bilayer MoS2 on silicon for higher terahertz amplitude modulation

被引:5
|
作者
Jakhar, Alka [1 ]
Kumar, Prabhat [2 ]
Husain, Sajid [3 ]
Dhyani, Veerendra [1 ]
Chouksey, Abhilasha [4 ]
Rai, Prashant Kumar [4 ]
Rawat, J. S. [4 ]
Das, Samaresh [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Appl Res Elect, New Delhi 110016, India
[2] Czech Acad Sci, Inst Phys, Dept Thin Films & Nanostruct, Cukrovarnicka 10-112, Prague 16200, Czech Republic
[3] Univ Paris Saclay, CNRS, Thales, Unite Mixte Phys, F-91767 Palaiseau, France
[4] Def Res & Dev Org, Nanotechnol Grp, New Delhi, India
来源
NANO EXPRESS | 2021年 / 2卷 / 04期
关键词
two-dimensional transition metal dichalcogenide; modulator; modulation depth; terahertz;
D O I
10.1088/2632-959X/ac1ef6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The terahertz (THz) amplitude modulation has been experimentally demonstrated by employing bilayer molybdenum disulfide (MoS2) on high-resistivity silicon (Si). The Raman spectroscopy and x-ray photoelectron spectra confirm the formation of bilayer MoS2 film. The THz transmission measurements are carried out using a continuous wave (CW) frequency-domain THz system. This reveals the higher modulation depth covering wide THz spectra of 0.1-1 THz at low optical pumping power. The modulation depth up to 72.3% at 0.1 THz and 62.8% at 0.9 THz under low power optical excitation is achieved. After annealing, the strong built-in electric field is induced at the MoS2-Si interface due to p-type doping in MoS2. This improves modulation depth to 86.4% and 79.7%, respectively. The finite-difference time-domain (FDTD) based numerical simulations match well with the experimental results. The higher modulation depth at low optical power, broadband response, low insertion losses, and simplicity in the design are the key attributes of this THz modulator.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Capacitively and Inductively Coupled Excitons in Bilayer MoS2
    Sponfeldner, Lukas
    Leisgang, Nadine
    Shree, Shivangi
    Paradisanos, Ioannis
    Watanabe, Kenji
    Taniguchi, Takashi
    Robert, Cedric
    Lagarde, Delphine
    Balocchi, Andrea
    Marie, Xavier
    Gerber, Iann C.
    Urbaszek, Bernhard
    Warburton, Richard J.
    PHYSICAL REVIEW LETTERS, 2022, 129 (10)
  • [22] Interlayer Coupling and Pressure Engineering in Bilayer MoS2
    Qiao, Wei
    Sun, Hao
    Fan, Xiaoyue
    Jin, Meiling
    Liu, Haiyang
    Tang, Tianhong
    Xiong, Lei
    Niu, Binghui
    Li, Xiang
    Wang, Gang
    CRYSTALS, 2022, 12 (05)
  • [23] Bandgap Engineering of Strained Monolayer and Bilayer MoS2
    Conley, Hiram J.
    Wang, Bin
    Ziegler, Jed I.
    Haglund, Richard F., Jr.
    Pantelides, Sokrates T.
    Bolotin, Kirill I.
    NANO LETTERS, 2013, 13 (08) : 3626 - 3630
  • [24] Strain-shear coupling in bilayer MoS2
    Lee, Jae-Ung
    Woo, Sungjong
    Park, Jaesung
    Park, Hee Chul
    Son, Young-Woo
    Cheong, Hyeonsik
    NATURE COMMUNICATIONS, 2017, 8
  • [25] Interfacial magnetic anisotropy in Py/MoS2 bilayer
    Jamilpanah, Loghman
    Hajiali, Mohammadreza
    Mohseni, Seyed Majid
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 514
  • [26] Strain-shear coupling in bilayer MoS2
    Jae-Ung Lee
    Sungjong Woo
    Jaesung Park
    Hee Chul Park
    Young-Woo Son
    Hyeonsik Cheong
    Nature Communications, 8
  • [27] Phase coherent transport in bilayer and trilayer MoS2
    Chu, Leiqiang
    Yudhistira, Indra
    Schmidt, Hennrik
    Wu, Tsz Chun
    Adam, Shaffique
    Eda, Goki
    PHYSICAL REVIEW B, 2019, 100 (12)
  • [28] Tuning band gaps in twisted bilayer MoS2
    Zhang, Yipei
    Zhan, Zhen
    Guinea, Francisco
    Angel Silva-Guillen, Jose
    Yuan, Shengjun
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [29] Stacking stability of MoS2 bilayer: An an initio study
    Tao Peng
    Guo Huai-Hong
    Yang Teng
    Zhang Zhi-Dong
    CHINESE PHYSICS B, 2014, 23 (10)
  • [30] Mechanical Fracture of Bilayer MoS2 with Grain Boundaries
    Wang, Wenwen
    Zhao, Hao
    Liu, Hong
    Wang, Lu
    Li, Youyong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (41): : 17692 - 17698