Determining the prediction limits of models and classifiers with applications for disruption prediction in JET

被引:6
|
作者
Murari, A. [1 ,2 ,3 ,12 ]
Peluso, E. [1 ,4 ]
Vega, J. [1 ,5 ,51 ]
Gelfusa, M. [1 ,4 ,84 ]
Lungaroni, M. [1 ,4 ]
Gaudio, P. [1 ,4 ,84 ]
Martinez, F. J. [1 ,5 ]
Abhangi, M. [39 ]
Abreu, P. [45 ]
Aftanas, M. [42 ]
Afzal, M. [8 ]
Aggarwal, K. M. [25 ]
Aho-Mantila, L. [99 ]
Ahonen, E. [6 ]
Aints, M. [95 ]
Airila, M. [99 ]
Albanese, R. [93 ]
Alegre, D. [51 ]
Alessi, E. [38 ]
Aleynikov, P. [47 ]
Alfier, A. [12 ]
Alkseev, A. [60 ]
Allan, P. [8 ]
Almaviva, S. [84 ]
Alonso, A. [51 ]
Alper, B. [8 ]
Alsworth, I. [8 ]
Alves, D. [45 ]
Ambrosino, G. [93 ]
Ambrosino, R. [94 ]
Amosov, V. [77 ]
Andersson, F. [16 ]
Andersson Sunden, E. [20 ]
Angelone, M. [79 ]
Anghel, A. [74 ]
Anghel, M. [73 ]
Angioni, C. [54 ]
Appel, L. [8 ]
Apruzzese, G. [79 ]
Arena, P. [26 ]
Ariola, M. [94 ]
Arnichand, H. [9 ]
Arnoux, G. [8 ]
Arshad, S. [35 ]
Ash, A. [8 ]
Asp, E. [20 ]
Asunta, O. [6 ]
Atanasiu, C. V. [74 ]
Austin, Y. [8 ]
Avotina, L. [92 ]
机构
[1] Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England
[2] Culham Sci Ctr, ITER Phys Dept, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[3] Univ Padua, Consorzio RFX, Acciaierie Venete SpA, CNR,ENEA,INFN, Corso Stati Uniti 4, I-35127 Padua, Italy
[4] Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy
[5] CIEMAT, Lab Nacl Fus, Ave Complutense 40, E-28040 Madrid, Spain
[6] Aalto Univ, FIN-00076 Aalto, Finland
[7] BCS, Barcelona, Spain
[8] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[9] IRFM, CEA, F-13108 St Paul Les Durance, France
[10] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[11] Consorzio CREATE, I-80125 Naples, Italy
[12] Consorzio RFX, I-35127 Padua, Italy
[13] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[14] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[15] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[16] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[17] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[18] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[19] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[20] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[21] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[22] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[23] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[24] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[25] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[26] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[27] Dublin City Univ, Dublin, Ireland
[28] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[29] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[30] EUROfus Programme Management Unit, D-85748 Garching, Germany
[31] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[32] European Commiss, B-1049 Brussels, Belgium
[33] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[34] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[35] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[36] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[37] Gen Atom, San Diego, CA 85608 USA
[38] IFP CNR, I-20125 Milan, Italy
[39] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[40] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[41] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[42] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[43] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[44] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[45] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[46] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[47] ITER Org, F-13067 St Paul Les Durance, France
[48] Naka Fus Res Estab, Japan Atom Energy Agcy, Naka 3110913, Ibaraki, Japan
[49] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[50] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France
关键词
prediction factor; conditional entropy; predictability; disruptions; ELMs; sawteeth;
D O I
10.1088/0029-5515/57/1/016024
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Understanding the many aspects of tokamak physics requires the development of quite sophisticated models. Moreover, in the operation of the devices, prediction of the future evolution of discharges can be of crucial importance, particularly in the case of the prediction of disruptions, which can cause serious damage to various parts of the machine. The determination of the limits of predictability is therefore an important issue for modelling, classifying and forecasting. In all these cases, once a certain level of performance has been reached, the question typically arises as to whether all the information available in the data has been exploited, or whether there are still margins for improvement of the tools being developed. In this paper, a theoretical information approach is proposed to address this issue. The excellent properties of the developed indicator, called the prediction factor (PF), have been proved with the help of a series of numerical tests. Its application to some typical behaviour relating to macroscopic instabilities in tokamaks has shown very positive results. The prediction factor has also been used to assess the performance of disruption predictors running in real time in the JET system, including the one systematically deployed in the feedback loop for mitigation purposes. The main conclusion is that the most advanced predictors basically exploit all the information contained in the locked mode signal on which they are based. Therefore, qualitative improvements in disruption prediction performance in JET would need the processing of additional signals, probably profiles.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] PHAD: a phase-oriented disruption prediction strategy for avoidance, prevention, and mitigation in JET
    Ratta, G. A.
    Vega, J.
    Murari, A.
    Gadariya, D.
    NUCLEAR FUSION, 2021, 61 (11)
  • [42] Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction
    Zorn, Kimberley M.
    Foil, Daniel H.
    Lane, Thomas R.
    Russo, Daniel P.
    Hillwalker, Wendy
    Feifarek, David J.
    Jones, Frank
    Klaren, William D.
    Brinkman, Ashley M.
    Ekins, Sean
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (19) : 12202 - 12213
  • [43] The limits of machine prediction
    Buchanan, Mark
    NATURE PHYSICS, 2019, 15 (04) : 304 - 304
  • [44] Improved feature selection based on genetic algorithms for real time disruption prediction on JET
    Ratta, G. A.
    Vega, J.
    Murari, A.
    FUSION ENGINEERING AND DESIGN, 2012, 87 (09) : 1670 - 1678
  • [45] The limits of machine prediction
    Mark Buchanan
    Nature Physics, 2019, 15 : 304 - 304
  • [46] PREDICTION AND ITS LIMITS
    Jasny, Barbara R.
    Stone, Richard
    SCIENCE, 2017, 355 (6324) : 469 - 469
  • [47] Comparison of Classifiers for the Risk of Diabetes Prediction
    Nai-arun, Nongyao
    Moungmai, Rungruttikarn
    7TH INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION TECHNOLOGY, 2015, 69 : 132 - 142
  • [48] COMBINING CLASSIFIERS FOR CREDIT RISK PREDICTION
    Bhekisipho TWALA
    Journal of Systems Science and Systems Engineering, 2009, 18 (03) : 292 - 311
  • [49] The prediction of bankruptcy using fuzzy classifiers
    Nogueira, R.
    Vieira, S. M.
    Sousa, J. M. C.
    2005 ICSC CONGRESS ON COMPUTATIONAL INTELLIGENCE METHODS AND APPLICATIONS (CIMA 2005), 2005, : 95 - 100
  • [50] Combining classifiers for credit risk prediction
    Twala, Bhekisipho
    JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2009, 18 (03) : 292 - 311