PHAD: a phase-oriented disruption prediction strategy for avoidance, prevention, and mitigation in JET

被引:15
|
作者
Ratta, G. A. [1 ]
Vega, J. [1 ]
Murari, A. [2 ]
Gadariya, D. [1 ]
机构
[1] CIEMAT, Lab Nacl Fus, Madrid, Spain
[2] Univ Padua, Ist Nazl Fis Nucl, CNR, Consorzio RFX,ENEA, Padua, Italy
关键词
disruptions; prevention; mitigation; profile indicators; MARFEs; genetic algorithms; avoidance; GENETIC ALGORITHMS; RADIATION;
D O I
10.1088/1741-4326/ac2637
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ideal operational scenario for the future tokamak reactor is disruption-free operation. However, so far all the experimental evidence indicates that disruptions are unavoidable and can occur with alarming frequency when approaching reactor conditions (low q (95), high radiated fraction, divertor detachment, etc). In this article, a unified strategy for disruption avoidance, prevention, and mitigation is proposed and validated on JET data. The approach is based on three phase-oriented predictors to detect the main instabilities leading to the undesired and sudden end of the discharge. The first model detects dangerous profiles as an early indication of a critical situation. The second is designed to identify multifaceted asymmetric radiation from the edge and other abnormal radiative events. The third model is devoted to mitigation, and triggers alarms around few tens of ms before the beginning of the current quench. The models have been trained and tested with a database of almost 1000 JET discharges of recent campaigns with the ITER-like wall. The overall performances are very close to 100% of successful detections with a few percent of false alarms. In addition to the first systematic use of visible cameras for disruption prevention in JET, the most relevant aspect of this work is related to the distribution of the alarms of the three predictors, which do not overlap and are sequential. Consequently, the three predictors are meant to work in parallel over running discharges and, depending on which one triggers the alarm, the cause can be determined and approximate remaining time to intervene can be estimated, potentially allowing for the optimisation of the remedial actions.
引用
收藏
页数:16
相关论文
共 10 条
  • [1] PETRA: A generalised real-time event detection platform at JET for disruption prediction, avoidance and mitigation
    Stuart, C. I.
    Artaserse, G.
    Card, P.
    Carvalho, I. S.
    Felton, R.
    Gerasimov, S. N.
    Goodyear, A.
    Henriques, R. B.
    Karkinsky, D.
    Lomas, P. J.
    McCullen, P.
    Rimini, F.
    Stephen, A. V.
    Valcarcel, D. F.
    Waterhouse, J.
    Wheatley, M.
    FUSION ENGINEERING AND DESIGN, 2021, 168
  • [2] A systematic investigation of radiation collapse for disruption avoidance and prevention on JET tokamak
    Rossi, R.
    Gelfusa, M.
    Craciunescu, T.
    Spolladore, L.
    Wyss, I.
    Peluso, E.
    Vega, J.
    Maggi, C. F.
    Mailloux, J.
    Maslov, M.
    Murari, A.
    MATTER AND RADIATION AT EXTREMES, 2023, 8 (04)
  • [3] A systematic investigation of radiation collapse for disruption avoidance and prevention on JET tokamak
    RRossi
    MGelfusa
    TCraciunescu
    LSpolladore
    IWyss
    EPeluso
    JVega
    CFMaggi
    JMailloux
    MMaslov
    AMurari
    JET Contributors
    Matter and Radiation at Extremes, 2023, (04) : 61 - 82
  • [4] A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET
    Pau, A.
    Fanni, A.
    Carcangiu, S.
    Cannas, B.
    Sias, G.
    Murari, A.
    Rimini, F.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    NUCLEAR FUSION, 2019, 59 (10)
  • [5] A First Analysis of JET Plasma Profile-Based Indicators for Disruption Prediction and Avoidance
    Pau, A.
    Fanni, A.
    Cannas, B.
    Carcangiu, S.
    Pisano, G.
    Sias, G.
    Sparapani, P.
    Baruzzo, M.
    Murari, A.
    Rimini, F.
    Tsalas, M.
    de Vries, P. C.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (07) : 2691 - 2698
  • [6] A Mitigation Strategy for the Prediction Inconsistency of Neural Phase Pickers
    Park Y.
    Beroza G.C.
    Ellsworth W.L.
    Seismological Research Letters, 2023, 94 (03) : 1603 - 1612
  • [7] A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
    Murari, Andrea
    Rossi, Riccardo
    Craciunescu, Teddy
    Vega, Jesus
    Gelfusa, Michela
    Mailloux, J.
    Abid, N.
    Abraham, K.
    Abreu, P.
    Adabonyan, O.
    Adrich, P.
    Afanasev, V.
    Afzal, M.
    Ahlgren, T.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Akhtar, M.
    Albanese, R.
    Alderson-Martin, M.
    Alegre, D.
    Aleiferis, S.
    Aleksa, A.
    Alekseev, A. G.
    Alessi, E.
    Aleynikov, P.
    Algualcil, J.
    Ali, M.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Sunden, E. Andersson
    Andrew, P.
    Angelini, B. M.
    Angioni, C.
    Antoniou, I.
    Appel, L. C.
    Appelbee, C.
    Aria, S.
    Ariola, M.
    Artaserse, G.
    Arter, W.
    Artigues, V.
    Asakura, N.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
    Andrea Murari
    Riccardo Rossi
    Teddy Craciunescu
    Jesús Vega
    Michela Gelfusa
    Nature Communications, 15
  • [9] A shapelet-based neural network for binary and multi-class disruption prediction for prevention at JET
    Artigues, V.
    de Vries, P. C.
    Jenko, F.
    PHYSICS OF PLASMAS, 2023, 30 (08)
  • [10] Real-time applications of Electron Cyclotron Emission interferometry for disruption avoidance during the plasma current ramp-up phase at JET
    Fontana, M.
    Challis, C. D.
    Conway, N. J.
    Felton, R.
    Goodyear, A.
    Hogben, C.
    Peacock, A.
    Schmuck, S.
    FUSION ENGINEERING AND DESIGN, 2020, 161