Partially congested propagation fronts in one-dimensional Navier-Stokes equations

被引:0
|
作者
Dalibard, Anne-Laure [1 ]
Perrin, Charlotte [2 ]
机构
[1] Univ Paris Diderot SPC, Sorbonne Univ, CNRS, LJLL, F-75005 Paris, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Aix En Provence, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Navier-Stokes equations; Free boundary problem; Traveling waves; Nonlinear stability; STABILITY; MODEL; WAVE;
D O I
10.1007/s41808-021-00131-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are dedicated to the analysis of the one-dimensional free-congested Navier-Stokes equations. After a brief synthesis of the results obtained in Dalibard and Perrin (Commun Math Sci 18(7):1775-1813, 2020) related to the existence and the asymptotic stability of partially congested profiles associated to the soft congestion Navier-Stokes system, we present a first local well-posedness result for the one-dimensional free-congested Navier-Stokes equations.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 50 条