Partially congested propagation fronts in one-dimensional Navier-Stokes equations

被引:0
|
作者
Dalibard, Anne-Laure [1 ]
Perrin, Charlotte [2 ]
机构
[1] Univ Paris Diderot SPC, Sorbonne Univ, CNRS, LJLL, F-75005 Paris, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Aix En Provence, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Navier-Stokes equations; Free boundary problem; Traveling waves; Nonlinear stability; STABILITY; MODEL; WAVE;
D O I
10.1007/s41808-021-00131-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are dedicated to the analysis of the one-dimensional free-congested Navier-Stokes equations. After a brief synthesis of the results obtained in Dalibard and Perrin (Commun Math Sci 18(7):1775-1813, 2020) related to the existence and the asymptotic stability of partially congested profiles associated to the soft congestion Navier-Stokes system, we present a first local well-posedness result for the one-dimensional free-congested Navier-Stokes equations.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 50 条
  • [21] Exponential Decay in Time of Density of One-dimensional Quantum Navier-Stokes Equations
    Jian-wei Dong
    Guang-pu Lou
    Jun-hui Zhu
    Yong Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 792 - 797
  • [22] Exponential Decay in Time of Density of One-dimensional Quantum Navier-Stokes Equations
    Jian-wei DONG
    Guang-pu LOU
    Jun-hui ZHU
    Yong YANG
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 792 - 797
  • [23] On one-dimensional compressible Navier-Stokes equations for a reacting mixture in unbounded domains
    Li, Siran
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [24] Navier-Stokes Equations for Low-Temperature One-Dimensional Quantum Fluids
    Urichuk, Andrew
    Scopa, Stefano
    De Nardis, Jacopo
    PHYSICAL REVIEW LETTERS, 2024, 132 (24)
  • [25] Modeling digital pulse waveforms by solving one-dimensional Navier-Stokes equations
    Fedotov, Aleksandr A.
    Akulova, Anna S.
    Akulov, Sergey A.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 3547 - 3550
  • [26] DYNAMICS OF VACUUM STATES FOR ONE-DIMENSIONAL FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Duan, Ben
    Luo, Zhen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2543 - 2564
  • [27] One class of partially invariant solutions of the Navier-Stokes equations
    S. V. Meleshko
    V. V. Pukhnachev
    Journal of Applied Mechanics and Technical Physics, 1999, 40 (2) : 208 - 216
  • [28] Quotient and Solutions of the One-Dimensional Navier-Stokes System
    Duyunova, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 2739 - 2745
  • [29] GLOBAL EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF SPACE
    王淑娟
    赵俊宁
    ActaMathematicaScientia, 2010, 30 (06) : 1889 - 1905
  • [30] GLOBAL EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF SPACE
    Wang Shujuan
    Zhao Junning
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (06) : 1889 - 1905