Partially congested propagation fronts in one-dimensional Navier-Stokes equations

被引:0
|
作者
Dalibard, Anne-Laure [1 ]
Perrin, Charlotte [2 ]
机构
[1] Univ Paris Diderot SPC, Sorbonne Univ, CNRS, LJLL, F-75005 Paris, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Aix En Provence, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Navier-Stokes equations; Free boundary problem; Traveling waves; Nonlinear stability; STABILITY; MODEL; WAVE;
D O I
10.1007/s41808-021-00131-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes are dedicated to the analysis of the one-dimensional free-congested Navier-Stokes equations. After a brief synthesis of the results obtained in Dalibard and Perrin (Commun Math Sci 18(7):1775-1813, 2020) related to the existence and the asymptotic stability of partially congested profiles associated to the soft congestion Navier-Stokes system, we present a first local well-posedness result for the one-dimensional free-congested Navier-Stokes equations.
引用
收藏
页码:491 / 507
页数:17
相关论文
共 50 条
  • [1] Partially congested propagation fronts in one-dimensional Navier–Stokes equations
    Anne-Laure Dalibard
    Charlotte Perrin
    Journal of Elliptic and Parabolic Equations, 2021, 7 : 491 - 507
  • [2] EXISTENCE AND STABILITY OF PARTIALLY CONGESTED PROPAGATION FRONTS IN A ONE-DIMENSIONAL NAVIER-STOKES MODEL
    Dalibard, Anne-Laure
    Perrin, Charlotte
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1775 - 1813
  • [3] ABOUT ONE-DIMENSIONAL LINEARIZED NAVIER-STOKES EQUATIONS
    Orazov, I. O.
    Shaldanbaev, A. Sh.
    BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, 2014, (04): : 8 - 10
  • [4] ON THE ONE-DIMENSIONAL NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLUIDS
    VALLI, A
    LECTURE NOTES IN MATHEMATICS, 1990, 1431 : 173 - 179
  • [5] CAUCHY PROBLEM FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Lian Ruxu
    Liu Jian
    Li Hailiang
    Xiao Ling
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) : 315 - 324
  • [6] Vacuum problem of one-dimensional compressible Navier-Stokes equations
    Li, H. -L.
    Li, J.
    Xin, Z.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 161 - 172
  • [7] CAUCHY PROBLEM FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    连汝续
    刘健
    李海梁
    肖玲
    ActaMathematicaScientia, 2012, 32 (01) : 315 - 324
  • [8] On the Blowing up of Solutions to One-dimensional Quantum Navier-Stokes Equations
    Jian-wei DONG
    You-lin ZHANG
    Yan-ping WANG
    Acta Mathematicae Applicatae Sinica, 2013, (04) : 855 - 860
  • [9] On the blowing up of solutions to one-dimensional quantum Navier-Stokes equations
    Jian-wei Dong
    You-lin Zhang
    Yan-ping Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 855 - 860
  • [10] Invariant Measures for the Stochastic One-Dimensional Compressible Navier-Stokes Equations
    Zelati, Michele Coti
    Glatt-Holtz, Nathan
    Trivisa, Konstantina
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1487 - 1522