Optimization of a High-resolution Collimator for a CdTe Detector: Monte Carlo Simulation Studies

被引:7
|
作者
Lee, Young-Jin [1 ]
Ryu, Hyun-Ju
Cho, Hyo-Min
Lee, Seung-Wan
Choi, Yu-Na
Kim, Hee-Joung
机构
[1] Yonsei Univ, Dept Radiol Sci, Wonju 220710, South Korea
基金
新加坡国家研究基金会;
关键词
Photon counting detector; Collimator optimization; Pixelated parallel-hole collimator; GAMMA-CAMERA; SPECT; GATE; PERFORMANCE; PLATFORM; PET;
D O I
10.3938/jkps.60.862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photon counting detectors using cadmium zinc telluride (CZT) or cadmium telluride (CdTe) have benefits compared to conventional scintillation detectors, and CZT and CdTe have advantageous physical characteristics for nuclear medicine imaging. Recently, many studies have been conducted using these materials to improve the sensitivity and the spatial resolution of the photon counting detector. By using a pixelated parallel-hole collimator, we may be able to improve the sensitivity and the spatial resolution. The purpose of this study was to optimize the design of a collimator to achieve excellent resolution and high sensitivity for a gamma camera system based on the CdTe detector. In this study we simulated a gamma camera system with a photon counting detector based on CdTe and evaluated the system's performance. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe detector by using a Geant4 Application for Tomographic Emission (GATE) simulation. This detector consists of small pixels (0.35 x 0.35 mm(2)). We designed two parallel-hole collimators with different shapes and verified their usefulness. One was the proposed pixelated parallel-hole collimator in which the hole size and the pixel size are the same, and the other was the hexagonal parallel-hole collimator, which had a hole size similar to that of the pixelated parallel-hole collimator. We evaluated the sensitivity, spatial resolution, and contrast resolution to determine which parallel-hole collimator was best for the PID 350 CdTe detector. The average sensitivity was 22.65% higher for the pixelated parallel-hole collimator than for the hexagonal parallel-hole collimator. Also, the pixelated parallel-hole collimator provided 10.7% better spatial resolution than the hexagonal parallel-hole collimator, and the contrast resolution was improved by 8.93%. These results reflect an improvement in sensitivity and spatial resolution, and indicate that the imaging performance of the pixelated parallel-hole collimator is better than that of the hexagonal parallel-hole collimator. In conclusion, we successfully established a high resolution gamma camera system with a pixelated parallel-hole collimator, and based on our results, we recommend using the pixelated parallel-hole collimator to improve the sensitivity and the spatial resolution of gamma camera systems with semiconductor detectors such as CdTe.
引用
收藏
页码:862 / 868
页数:7
相关论文
共 50 条
  • [41] A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation
    Jiajia Zhai
    Haohui Tang
    Xianchao Huang
    Shuangquan Liu
    Yingjie Wang
    Chong Li
    Xiuzuo Liang
    Yi Zhang
    Meichan Feng
    Zhiming Zhang
    Long Wei
    Radiation Detection Technology and Methods, 2022, 6 : 244 - 253
  • [42] Monte Carlo simulation of the LENA detector system
    Howard, C.
    Iliadis, C.
    Champagne, A. E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 729 : 254 - 259
  • [43] MONTE-CARLO SIMULATION FOR THE SCINTILLATING FIBERS TRACKING DETECTOR AND ITS RESOLUTION EVALUATION
    DAMBROSIO, C
    QIAN, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 335 (1-2): : 341 - 346
  • [44] Monte-Carlo simulations of a high-resolution neutron TOF instrument
    Bernhardt, P
    Demmel, F
    Magerl, A
    PHYSICA B, 2000, 276 : 114 - 115
  • [45] High-resolution and Monte Carlo additions to the SASKTRAN radiative transfer model
    Zawada, D. J.
    Dueck, S. R.
    Rieger, L. A.
    Bourassa, A. E.
    Lloyd, N. D.
    Degenstein, D. A.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (06) : 2609 - 2623
  • [46] Optimization of the design parameters for a thyroid care nuclide monitoring diverging collimator using Monte Carlo simulation
    Dong-Hee Han
    Seung-Jae Lee
    Jang-Oh Kim
    Da-Eun Kwon
    Kyung-Hwan Jung
    Cheol-Ha Baek
    Journal of the Korean Physical Society, 2022, 81 : 675 - 679
  • [47] Optimization of the design parameters for a thyroid care nuclide monitoring diverging collimator using Monte Carlo simulation
    Han, Dong-Hee
    Lee, Seung-Jae
    Kim, Jang-Oh
    Kwon, Da-Eun
    Jung, Kyung-Hwan
    Baek, Cheol-Ha
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 81 (07) : 675 - 679
  • [48] Ultra High Resolution SPECT with CdTe for Small Animal Imaging applications: Monte Carlo Simulation Study Using Voxelized Phantom
    Park, Su Jin
    Lee, Chang-Lae
    Cho, Hyo-Min
    Kim, Hee-Joung
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3030 - 3033
  • [49] Spatial Resolution Optimization of Backscattered Electron Images Using Monte Carlo Simulation
    Probst, Camille
    Demers, Hendrix
    Gauvin, Raynald
    MICROSCOPY AND MICROANALYSIS, 2012, 18 (03) : 628 - 637
  • [50] Determining PGAA collimator plug design using Monte Carlo simulation
    Jalil, A.
    Chetaine, A.
    Amsil, H.
    Embarch, K.
    Benchrif, A.
    Laraki, K.
    Marah, H.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2021, 53 (03) : 942 - 948