Optimization of a High-resolution Collimator for a CdTe Detector: Monte Carlo Simulation Studies

被引:7
|
作者
Lee, Young-Jin [1 ]
Ryu, Hyun-Ju
Cho, Hyo-Min
Lee, Seung-Wan
Choi, Yu-Na
Kim, Hee-Joung
机构
[1] Yonsei Univ, Dept Radiol Sci, Wonju 220710, South Korea
基金
新加坡国家研究基金会;
关键词
Photon counting detector; Collimator optimization; Pixelated parallel-hole collimator; GAMMA-CAMERA; SPECT; GATE; PERFORMANCE; PLATFORM; PET;
D O I
10.3938/jkps.60.862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photon counting detectors using cadmium zinc telluride (CZT) or cadmium telluride (CdTe) have benefits compared to conventional scintillation detectors, and CZT and CdTe have advantageous physical characteristics for nuclear medicine imaging. Recently, many studies have been conducted using these materials to improve the sensitivity and the spatial resolution of the photon counting detector. By using a pixelated parallel-hole collimator, we may be able to improve the sensitivity and the spatial resolution. The purpose of this study was to optimize the design of a collimator to achieve excellent resolution and high sensitivity for a gamma camera system based on the CdTe detector. In this study we simulated a gamma camera system with a photon counting detector based on CdTe and evaluated the system's performance. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe detector by using a Geant4 Application for Tomographic Emission (GATE) simulation. This detector consists of small pixels (0.35 x 0.35 mm(2)). We designed two parallel-hole collimators with different shapes and verified their usefulness. One was the proposed pixelated parallel-hole collimator in which the hole size and the pixel size are the same, and the other was the hexagonal parallel-hole collimator, which had a hole size similar to that of the pixelated parallel-hole collimator. We evaluated the sensitivity, spatial resolution, and contrast resolution to determine which parallel-hole collimator was best for the PID 350 CdTe detector. The average sensitivity was 22.65% higher for the pixelated parallel-hole collimator than for the hexagonal parallel-hole collimator. Also, the pixelated parallel-hole collimator provided 10.7% better spatial resolution than the hexagonal parallel-hole collimator, and the contrast resolution was improved by 8.93%. These results reflect an improvement in sensitivity and spatial resolution, and indicate that the imaging performance of the pixelated parallel-hole collimator is better than that of the hexagonal parallel-hole collimator. In conclusion, we successfully established a high resolution gamma camera system with a pixelated parallel-hole collimator, and based on our results, we recommend using the pixelated parallel-hole collimator to improve the sensitivity and the spatial resolution of gamma camera systems with semiconductor detectors such as CdTe.
引用
收藏
页码:862 / 868
页数:7
相关论文
共 50 条
  • [31] Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers
    Song, Yushou
    Conner, Joseph
    Zhang, Xiaodong
    Hayward, Jason P.
    APPLIED RADIATION AND ISOTOPES, 2016, 108 : 100 - 107
  • [32] Monte Carlo Studies of High Resolution Microcalorimeter Detectors
    Hoover, A. S.
    Rabin, M. W.
    Rudy, C. R.
    Tournear, D. M.
    Vo, D. T.
    Beall, J. A.
    Doriese, W. B.
    Horansky, R. D.
    Irwin, K. D.
    Ullom, J. N.
    Zink, B. L.
    Chesson, K. E.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 1268 - 1272
  • [33] HIGH-RESOLUTION GAMMA-RAY SPECTROSCOPY WITH CDTE DETECTOR SYSTEMS
    RICHTER, M
    SIFFERT, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1992, 322 (03): : 529 - 537
  • [34] Monte Carlo Simulation of Thin-Film CdTe Detector Performance for Diagnostic Imaging Applications
    Jin, X.
    Parsai, E.
    Shvydka, D.
    Kang, J.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [35] Optimization of Collimator Design in HiReSPECT II: a Monte Carlo Study
    Mirdoraghi, M.
    Fard, B. Teimourian
    Kochebina, O.
    Mahani, H.
    Ay, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S699 - S699
  • [36] Effects of collimator backscatter in an Elekta linac by Monte Carlo simulation
    Kairn, T.
    Crowe, S. B.
    Poole, C. M.
    Fielding, A. L.
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2009, 32 (03) : 129 - 135
  • [37] A high-resolution synthetic collimator.
    Wilson, DW
    Clarkson, E
    Barrett, HH
    JOURNAL OF NUCLEAR MEDICINE, 1998, 39 (05) : 93P - 93P
  • [38] Effects of collimator backscatter in an Elekta linac by Monte Carlo simulation
    T. Kairn
    S. B. Crowe
    C. M. Poole
    A. L. Fielding
    Australasian Physics & Engineering Sciences in Medicine, 2009, 32 : 129 - 135
  • [39] Monte Carlo Simulation and Development of a Multileaf Collimator for Proton Therapy
    Ainsley, C.
    Scheuermann, R.
    Avery, S.
    Dolney, D.
    Maughan, R.
    McDonough, J.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [40] A high-position-resolution trajectory detector system for cosmic ray muon tomography: Monte Carlo simulation
    Zhai, Jiajia
    Tang, Haohui
    Huang, Xianchao
    Liu, Shuangquan
    Wang, Yingjie
    Li, Chong
    Liang, Xiuzuo
    Zhang, Yi
    Feng, Meichan
    Zhang, Zhiming
    Wei, Long
    RADIATION DETECTION TECHNOLOGY AND METHODS, 2022, 6 (02) : 244 - 253