On the degrees of freedom of reduced-rank estimators in multivariate regression

被引:29
|
作者
Mukherjee, A. [1 ]
Chen, K. [2 ]
Wang, N. [3 ]
Zhu, J.
机构
[1] WalmartLabs, Smart Forecasting Team, San Bruno, CA 94066 USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Adaptive nuclear norm; Degrees of freedom; Model selection; Multivariate regression; Reduced-rank regression; Singular value decomposition; PRINCIPAL COMPONENTS; DIMENSION REDUCTION; SELECTION; MATRIX; MODELS;
D O I
10.1093/biomet/asu067
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.
引用
收藏
页码:457 / 477
页数:21
相关论文
共 50 条
  • [41] MULTIPLE QUANTILE MODELING VIA REDUCED-RANK REGRESSION
    Lian, Heng
    Zhao, Weihua
    Ma, Yanyuan
    STATISTICA SINICA, 2019, 29 (03) : 1439 - 1464
  • [42] Sparse reduced-rank regression for integrating omics data
    Haileab Hilafu
    Sandra E. Safo
    Lillian Haine
    BMC Bioinformatics, 21
  • [43] Crosslingual Document Embedding as Reduced-Rank Ridge Regression
    Josifoski, Martin
    Paskov, Ivan S.
    Paskov, Hristo S.
    Jaggi, Martin
    West, Robert
    PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 744 - 752
  • [44] A multivariate reduced-rank growth curve model with unbalanced data
    Heungsun Hwang
    Yoshio Takane
    Psychometrika, 2004, 69 : 65 - 79
  • [45] Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions
    Stoica, P
    Viberg, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) : 3069 - 3078
  • [46] Atmospheric and surface parameter retrievals from multispectral thermal imagery via reduced-rank multivariate regression
    Hernandez-Baquero, ED
    Schott, JR
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1525 - 1527
  • [47] A multivariate reduced-rank growth curve model with unbalanced data
    Hwang, HS
    Takane, Y
    PSYCHOMETRIKA, 2004, 69 (01) : 65 - 79
  • [48] A Sparse Reduced-Rank Regression Approach for Hyperspectral Image Unmixing
    Giampouras, Paris V.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    Themelis, Konstantinos E.
    2015 3RD INTERNATIONAL WORKSHOP ON COMPRESSED SENSING THEORY AND ITS APPLICATION TO RADAR, SONAR, AND REMOTE SENSING (COSERA), 2015, : 139 - 143
  • [49] Speech Emotion Recognition Based on Kernel Reduced-rank Regression
    Zheng, Wenming
    Zhou, Xiaoyan
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1972 - 1976