On the degrees of freedom of reduced-rank estimators in multivariate regression

被引:29
|
作者
Mukherjee, A. [1 ]
Chen, K. [2 ]
Wang, N. [3 ]
Zhu, J.
机构
[1] WalmartLabs, Smart Forecasting Team, San Bruno, CA 94066 USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Adaptive nuclear norm; Degrees of freedom; Model selection; Multivariate regression; Reduced-rank regression; Singular value decomposition; PRINCIPAL COMPONENTS; DIMENSION REDUCTION; SELECTION; MATRIX; MODELS;
D O I
10.1093/biomet/asu067
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the effective degrees of freedom of a general class of reduced-rank estimators for multivariate regression in the framework of Stein's unbiased risk estimation. A finite-sample exact unbiased estimator is derived that admits a closed-form expression in terms of the thresholded singular values of the least-squares solution and hence is readily computable. The results continue to hold in the high-dimensional setting where both the predictor and the response dimensions may be larger than the sample size. The derived analytical form facilitates the investigation of theoretical properties and provides new insights into the empirical behaviour of the degrees of freedom. In particular, we examine the differences and connections between the proposed estimator and a commonly-used naive estimator. The use of the proposed estimator leads to efficient and accurate prediction risk estimation and model selection, as demonstrated by simulation studies and a data example.
引用
收藏
页码:457 / 477
页数:21
相关论文
共 50 条
  • [31] Multivariate reduced-rank nonlinear time series modeling
    Li, Ming-Chung
    Chan, Kung-Sik
    STATISTICA SINICA, 2007, 17 (01) : 139 - 159
  • [32] Efficient Sparse Reduced-Rank Regression With Covariance Estimation
    Li, Fengpei
    Zhao, Ziping
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 46 - 50
  • [33] Stability Approach to Regularization Selection for Reduced-Rank Regression
    Wen, Canhong
    Wang, Qin
    Jiang, Yuan
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 974 - 984
  • [34] Robust Sparse Reduced-Rank Regression with Response Dependency
    Liu, Wenchen
    Liu, Guanfu
    Tang, Yincai
    SYMMETRY-BASEL, 2022, 14 (08):
  • [35] Psychological disorders and dietary patterns by reduced-rank regression
    Mahdieh Hosseinzadeh
    Mohammad-Reza Vafa
    Ahmad Esmaillzadeh
    Awat Feizi
    Reza Majdzadeh
    Hamidreza Afshar
    Ammar Hassanzadeh Keshteli
    Peyman Adibi
    European Journal of Clinical Nutrition, 2019, 73 : 408 - 415
  • [36] REDUCED RANK REGRESSION ASYMPTOTICS IN MULTIVARIATE REGRESSION
    PHILLIPS, PCB
    ECONOMETRIC THEORY, 1995, 11 (03) : 661 - 666
  • [37] Parametric and semiparametric reduced-rank regression with flexible sparsity
    Lian, Heng
    Feng, Sanying
    Zhao, Kaifeng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 136 : 163 - 174
  • [38] Tuning Parameter Selection for Underdetermined Reduced-Rank Regression
    Ulfarsson, Magnus O.
    Solo, Victor
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (09) : 881 - 884
  • [39] Psychological disorders and dietary patterns by reduced-rank regression
    Hosseinzadeh, Mandieh
    Vafa, Mohammad-Reza
    Esmaillzadeh, Ahmad
    Feizi, Awat
    Majdzadeh, Reza
    Afshar, Hamidreza
    Keshtel, Ammar Hassanzadeh
    Adibi, Peyman
    EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2019, 73 (03) : 408 - 415
  • [40] Sparse reduced-rank regression for integrating omics data
    Hilafu, Haileab
    Safo, Sandra E.
    Haine, Lillian
    BMC BIOINFORMATICS, 2020, 21 (01)