A hybrid approach to frequent itemset hiding

被引:5
|
作者
Gkoulalas-Divanis, Aris [1 ]
Verykios, Vassilios S. [1 ]
机构
[1] Univ Thessaly, Dept Comp & Commun Engn, Volos, Greece
关键词
D O I
10.1109/ICTAI.2007.68
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel, exact border-based approach that provides an optimal solution for the hiding of sensitive frequent itemsets by (i) minimally extending the original database by a synthetically generated database part - the database extension, (ii) formulating the creation of the database extension as a constraint satisfaction problem that is solved by using binary integer programming, and (iii) providing an approximate solution close to the optimal one when an ideal solution does not exist. Extending the original database for sensitive itemset hiding is proved to provide optimal solutions to an extended set of hiding problems compared to previous approaches and to provide solutions of higher quality.
引用
收藏
页码:297 / 304
页数:8
相关论文
共 50 条
  • [41] A max-min approach for hiding frequent itemsets
    Moustakides, George V.
    Verykios, Vassilios S.
    ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 502 - +
  • [42] A novel approach for hiding sensitive utility and frequent itemsets
    Liu, Xuan
    Xu, Feng
    Lv, Xin
    INTELLIGENT DATA ANALYSIS, 2018, 22 (06) : 1259 - 1278
  • [43] Extracting useful knowledge from event logs: A frequent itemset mining approach
    Djenouri, Youcef
    Belhadi, Asma
    Fournier-Viger, Philippe
    KNOWLEDGE-BASED SYSTEMS, 2018, 139 : 132 - 148
  • [44] A Survey Paper on Frequent Itemset Mining
    Sastry, J. S. V. R. S.
    Suresh, V
    INTERNATIONAL CONFERENCE ON COMPUTER VISION AND MACHINE LEARNING, 2019, 1228
  • [45] Frequent Itemset Mining in Multirelational Databases
    Jimenez, Aida
    Berzal, Fernando
    Cubero, Juan-Carlos
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2009, 5722 : 15 - 24
  • [46] Verified Programs for Frequent Itemset Mining
    Loulergue, Frederic
    Whitney, Christopher D.
    2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, : 1516 - 1523
  • [47] MAFIA: A maximal frequent itemset algorithm
    Burdick, D
    Calimlim, M
    Flannick, J
    Gehrke, J
    Yiu, TM
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (11) : 1490 - 1504
  • [48] Oracle and Vertica for Frequent Itemset Mining
    Kyurkchiev, Hristo
    Kaloyanova, Kalinka
    DATA MINING AND BIG DATA, DMBD 2016, 2016, 9714 : 77 - 85
  • [49] A primer to frequent itemset mining for bioinformatics
    Naulaerts, Stefan
    Meysman, Pieter
    Bittremieux, Wout
    Trung Nghia Vu
    Vanden Berghe, Wim
    Goethals, Bart
    Laukens, Kris
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) : 216 - 231
  • [50] An efficient frequent itemset mining algorithm
    Luo, Ke
    Zhang, Xue-Mao
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 756 - 761