MAFIA: A maximal frequent itemset algorithm

被引:146
|
作者
Burdick, D
Calimlim, M
Flannick, J
Gehrke, J
Yiu, TM
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
[3] Stanford Univ, Janes H Clark Ctr, Stanford, CA 94305 USA
[4] Amazon Com, Seattle, WA 98104 USA
基金
美国国家科学基金会;
关键词
itemset mining; maximal itemsets; transactional databases;
D O I
10.1109/TKDE.2005.183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new algorithm for mining maximal frequent itemsets from a transactional database. The search strategy of the algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms that significantly improve mining performance. Our implementation for support counting combines a vertical bitmap representation of the data with an efficient bitmap compression scheme. In a thorough experimental analysis, we isolate the effects of individual components of MAFIA including search space pruning techniques and adaptive compression. We also compare our performance with previous work by running tests on very different types of data sets. Our experiments show that MAFIA performs best when mining long itemsets and outperforms other algorithms on dense data by a factor of three to 30.
引用
收藏
页码:1490 / 1504
页数:15
相关论文
共 50 条
  • [1] MAFIA: A maximal frequent itemset algorithm for transactional databases
    Burdick, D
    Calimlim, M
    Gehrke, J
    17TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2001, : 443 - 452
  • [2] A maximal frequent itemset algorithm
    Wang, H
    Li, QH
    Ma, CX
    Li, KL
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 484 - 490
  • [3] An algorithm for mining constrained maximal frequent itemset in uncertain data
    Du, Haizhou
    Journal of Information and Computational Science, 2012, 9 (15): : 4509 - 4515
  • [4] Index-maxminer: A new maximal frequent itemset mining algorithm
    Song, Wei
    Yang, Bingru
    Xu, Zhangyan
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2008, 17 (02) : 303 - 320
  • [5] A simple but effective maximal frequent itemset mining algorithm over streams
    Li, H. (mydlhf@126.com), 1600, Academy Publisher (07):
  • [6] A False Negative Maximal Frequent Itemset Mining Algorithm over Stream
    Li, Haifeng
    Zhang, Ning
    ADVANCED DATA MINING AND APPLICATIONS, PT I, 2011, 7120 : 29 - +
  • [7] Right-Hand Side Expanding Algorithm for Maximal Frequent Itemset Mining
    Zhang, Yalong
    Yu, Wei
    Zhu, Qiuqin
    Ma, Xuan
    Ogura, Hisakazu
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [8] ParallelCharMax: An Effective Maximal Frequent Itemset Mining Algorithm Based on MapReduce Framework
    Gahar, Rania Mkhinini
    Arfaoui, Olfa
    Sassi Hidri, Minyar
    Ben Hadj-Alouane, Nejib
    2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 571 - 578
  • [9] The Discussions of Maximal Frequent Itemset Mining Optimization
    Li, Haifeng
    2016 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE AND INTERNET TECHNOLOGY (CII 2016), 2016, : 96 - 100
  • [10] An Incremental Interesting Maximal Frequent Itemset Mining Based on FP-Growth Algorithm
    Alsaeedi, Hussein A.
    Alhegami, Ahmed S.
    COMPLEXITY, 2022, 2022