Surface Roughness Prediction in Additive Manufacturing Using Machine Learning

被引:0
|
作者
Wu, Dazhong [1 ]
Wei, Yupeng [2 ]
Terpenny, Janis [2 ]
机构
[1] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
[2] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA
关键词
Additive manufacturing; Process monitoring; Surface roughness; Prognostics and health management; Machine learning; NEURAL-NETWORK;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To realize high quality, additively manufactured parts, real-time process monitoring and advanced predictive modeling tools are crucial for accelerating quality assurance and quality control in additive manufacturing. While previous research has demonstrated the effectiveness of physics- and model-based diagnosis and prognosis for additive manufacturing, very little research has been reported on real-time monitoring and prediction of surface roughness in fused deposition modeling (FDM). This paper presents a new data-driven approach to surface roughness prediction in FDM. A real-time monitoring system is developed to monitor the health condition of a 3D printer and FDM processes using multiple sensors. A predictive model is built by random forests (RFs). Experimental results have shown that the predictive model is capable of predicting the surface roughness of a printed part with very high accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning
    Chunyang Xia
    Zengxi Pan
    Joseph Polden
    Huijun Li
    Yanling Xu
    Shanben Chen
    Journal of Intelligent Manufacturing, 2022, 33 : 1467 - 1482
  • [2] Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning
    Xia, Chunyang
    Pan, Zengxi
    Polden, Joseph
    Li, Huijun
    Xu, Yanling
    Chen, Shanben
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (05) : 1467 - 1482
  • [3] Prediction of surface roughness in extrusion-based additive manufacturing with machine learning
    Li, Zhixiong
    Zhang, Ziyang
    Shi, Junchuan
    Wu, Dazhong
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 57 : 488 - 495
  • [4] Implementing machine learning in robotic wire arc additive manufacturing for minimizing surface roughness
    Kazmi, Kashif Hasan
    Chandra, Mukesh
    Rajak, Sonu
    Sharma, Sumit K.
    Mandal, Amitava
    Das, Alok Kumar
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2025, 38 (02) : 255 - 270
  • [5] Distorsion Prediction of Additive Manufacturing Process using Machine Learning Methods
    Biczo, Zoltan
    Felde, Imre
    Szenasi, Sandor
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 249 - 252
  • [6] Machine learning based layer roughness modeling in robotic additive manufacturing
    Yaseer, Ahmed
    Chen, Heping
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 70 : 543 - 552
  • [7] Raster Angle Prediction of Additive Manufacturing Process Using Machine Learning Algorithm
    Ulkir, Osman
    Bayraklilar, Mehmet Said
    Kuncan, Melih
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [8] Prediction of machine learning-based hardness for the polycarbonate using additive manufacturing
    Mahmoud, Haitham A.
    Shanmugasundar, G.
    Vyavahare, Swapnil
    Kumar, Rakesh
    Cep, Robert
    Salunkhe, Sachin
    Gawade, Sharad
    Nasr, Emad S. Abouel
    FRONTIERS IN MATERIALS, 2024, 11
  • [9] Image Data-Based Surface Texture Characterization and Prediction Using Machine Learning Approaches for Additive Manufacturing
    Akhil, V.
    Raghav, G.
    Arunachalam, N.
    Srinivas, D. S.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2020, 20 (02)
  • [10] Prediction of Surface Roughness in Hybrid Magnetorheological Finishing of Silicon Using Machine Learning
    Srivastava, Mayank
    Singh, Gurminder
    Verma, Kshitij
    Pandey, Pulak M.
    Rana, Prashant Singh
    Gupta, Munish Kumar
    Khanna, Navneet
    SILICON, 2024, 16 (10) : 4317 - 4332