Surface Roughness Prediction in Additive Manufacturing Using Machine Learning

被引:0
|
作者
Wu, Dazhong [1 ]
Wei, Yupeng [2 ]
Terpenny, Janis [2 ]
机构
[1] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
[2] Penn State Univ, Dept Ind & Mfg Engn, University Pk, PA 16802 USA
关键词
Additive manufacturing; Process monitoring; Surface roughness; Prognostics and health management; Machine learning; NEURAL-NETWORK;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To realize high quality, additively manufactured parts, real-time process monitoring and advanced predictive modeling tools are crucial for accelerating quality assurance and quality control in additive manufacturing. While previous research has demonstrated the effectiveness of physics- and model-based diagnosis and prognosis for additive manufacturing, very little research has been reported on real-time monitoring and prediction of surface roughness in fused deposition modeling (FDM). This paper presents a new data-driven approach to surface roughness prediction in FDM. A real-time monitoring system is developed to monitor the health condition of a 3D printer and FDM processes using multiple sensors. A predictive model is built by random forests (RFs). Experimental results have shown that the predictive model is capable of predicting the surface roughness of a printed part with very high accuracy.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Prediction of surface roughness in duplex stainless steel top milling using machine learning techniques
    Vasconcelos, Guilherme Augusto Vilas Boas
    Francisco, Matheus Brendon
    de Oliveira, Carlos Henrique
    Barbedo, Elioenai Levi
    de Souza, Luiz Gustavo Paes
    de Lourdes Noronha Motta Melo, Mirian
    International Journal of Advanced Manufacturing Technology, 1600, 134 (5-6): : 2939 - 2953
  • [32] Prediction of surface roughness using machine learning approach for abrasive waterjet milling of alumina ceramic
    Ramesh, Prabhu
    Mani, Kanthababu
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (1-2): : 503 - 516
  • [33] Prediction of surface roughness in duplex stainless steel top milling using machine learning techniques
    Vasconcelos, Guilherme Augusto Vilas Boas
    Francisco, Matheus Brendon
    de Oliveira, Carlos Henrique
    Barbedo, Elioenai Levi
    de Souza, Luiz Gustavo Paes
    Melo, Mirian de Lourdes Noronha Motta
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (5-6): : 2939 - 2953
  • [35] Prediction of melt pool shape in additive manufacturing based on machine learning methods
    Zhu, Xiaobo
    Jiang, Fengchun
    Guo, Chunhuan
    Wang, Zhen
    Dong, Tao
    Li, Haixin
    OPTICS AND LASER TECHNOLOGY, 2023, 159
  • [36] A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing
    Germán O. Barrionuevo
    Pedro M. Sequeira-Almeida
    Sergio Ríos
    Jorge A. Ramos-Grez
    Stewart W. Williams
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 3123 - 3133
  • [37] Machine Learning Approach for the Prediction of Defect Characteristics in Wire Arc Additive Manufacturing
    Cheepu, Muralimohan
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (02) : 447 - 455
  • [38] A machine learning approach for the prediction of melting efficiency in wire arc additive manufacturing
    Barrionuevo, German O.
    Sequeira-Almeida, Pedro M.
    Rios, Sergio
    Ramos-Grez, Jorge A.
    Williams, Stewart W.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (5-6): : 3123 - 3133
  • [39] Machine Learning Approach for the Prediction of Defect Characteristics in Wire Arc Additive Manufacturing
    Muralimohan Cheepu
    Transactions of the Indian Institute of Metals, 2023, 76 : 447 - 455
  • [40] Machine learning method for roughness prediction
    Makhoul, Bassem Y.
    Simas Filho, Eduardo F.
    de Assis, Thiago A.
    SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2024, 12 (03):