Raster Angle Prediction of Additive Manufacturing Process Using Machine Learning Algorithm

被引:3
|
作者
Ulkir, Osman [1 ]
Bayraklilar, Mehmet Said [2 ]
Kuncan, Melih [3 ]
机构
[1] Mus Alparslan Univ, Dept Elect & Energy, TR-49210 Mus, Turkiye
[2] Siirt Univ, Dept Civil Engn, TR-56100 Siirt, Turkiye
[3] Siirt Univ, Dept Elect & Elect Engn, TR-56100 Siirt, Turkiye
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 05期
关键词
additive manufacturing; machine learning; FDM; raster angle; prediction; GAUSSIAN PROCESS REGRESSION;
D O I
10.3390/app14052046
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As additive manufacturing (AM) processes become integrated with artificial intelligence systems, the time and cost of the fabrication process decrease. In this study, the raster angle, an important parameter in the manufacturing process, was examined using fused deposition modeling (FDM), an AM method. The optimal value of this parameter varies depending on the designed product geometry. By changing the raster angle, the distribution of stresses and strains within the printed object can be modified, potentially influencing the mechanical behavior of the object. Thus, the correct estimation of the raster angle is essential for obtaining parts with high mechanical properties. The focus of this study is to reduce the fabrication time and cost of products by intertwining machine learning (ML) systems with mechanical systems. Its novelty is that ML has never been applied for FDM raster angle estimation. The estimation and modeling of the raster angle were performed using five different ML algorithms. These algorithms include a support vector machine (SVM), Gaussian process regression (GPR), an artificial neural network (ANN), decision tree regression (DTR), and random forest regression (RFR). Data for training were generated using various shapes and geometries, then trained in the MATLAB software, and a prediction model between the input parameters and the raster angle was created. The predicted model was evaluated using five performance criteria. The RFR model predicts the raster angle in the FDM test data with R-squared (R2) = 0.92, an explained variance score (EVS) = 0.92, a mean absolute error (MAE) = 0.012, a root mean square error (RMSE) = 0.056, and a mean squared error (MSE) = 0.0032. These values are R2 = 0.93, EVS = 0.93, MAE = 0.010, RMSE = 0.051, and MSE0.0025 for the training data. RFR is significantly superior to the other prediction algorithms. The proposed model predicts the optimum raster angle for any geometry.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Distorsion Prediction of Additive Manufacturing Process using Machine Learning Methods
    Biczo, Zoltan
    Felde, Imre
    Szenasi, Sandor
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 249 - 252
  • [2] Surface Roughness Prediction in Additive Manufacturing Using Machine Learning
    Wu, Dazhong
    Wei, Yupeng
    Terpenny, Janis
    PROCEEDINGS OF THE ASME 13TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2018, VOL 3, 2018,
  • [3] Outlier detection in additive manufacturing using novel machine learning algorithm
    Dutta, Chiranjit
    Nagarajan, Nagabhooshanam
    Adhoni, Zameer Ahmed
    Dhandapany, Sendil Kumar
    Alagarsamy, Aravindhan
    Chakravarthy, Antharaju Kalyana
    Praveen, Neti
    Pushpanathan, Ganeshan
    Kannan, Sathish
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 130 (5-6): : 2505 - 2522
  • [4] Zoning additive manufacturing process histories using unsupervised machine learning
    Donegan, Sean P.
    Schwalbach, Edwin J.
    Groeber, Michael A.
    MATERIALS CHARACTERIZATION, 2020, 161 (161)
  • [5] Prediction of machine learning-based hardness for the polycarbonate using additive manufacturing
    Mahmoud, Haitham A.
    Shanmugasundar, G.
    Vyavahare, Swapnil
    Kumar, Rakesh
    Cep, Robert
    Salunkhe, Sachin
    Gawade, Sharad
    Nasr, Emad S. Abouel
    FRONTIERS IN MATERIALS, 2024, 11
  • [6] Bead Geometry Prediction in Laser-Wire Additive Manufacturing Process Using Machine Learning: Case of Study
    Mbodj, Natago Guile
    Abuabiah, Mohammad
    Plapper, Peter
    El Kandaoui, Maxime
    Yaacoubi, Slah
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [7] Quantum Machine Learning for Additive Manufacturing Process Monitoring
    Choi, Eunsik
    Sul, Jinhwan
    Kim, Jungin E.
    Hong, Sungjin
    Gonzalez, Beatriz Izquierdo
    Cembellin, Pablo
    Wang, Yan
    MANUFACTURING LETTERS, 2024, 41 : 1415 - 1422
  • [8] Quantum machine learning for additive manufacturing process monitoring
    Choi, Eunsik
    Sul, Jinhwan
    Kim, Jungin E.
    Hong, Sungjin
    Gonzalez, Beatriz Izquierdo
    Cembellin, Pablo
    Wang, Yan
    Manufacturing Letters, 2024, 41 : 1415 - 1422
  • [9] A review of machine learning in additive manufacturing: design and process
    Chen, Kefan
    Zhang, Peilei
    Yan, Hua
    Chen, Guanglong
    Sun, Tianzhu
    Lu, Qinghua
    Chen, Yu
    Shi, Haichuan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 135 (3-4): : 1051 - 1087
  • [10] Machine learning prediction of mechanical properties in metal additive manufacturing
    Akbari, Parand
    Zamani, Masoud
    Mostafaei, Amir
    ADDITIVE MANUFACTURING, 2024, 91