Topological Phases in AB-Stacked MoTe2/WSe2: Z2 Topological Insulators, Chern Insulators, and Topological Charge Density Waves

被引:43
|
作者
Pan, Haining [1 ,2 ]
Xie, Ming [1 ,2 ]
Wu, Fengcheng [3 ,4 ]
Das Sarma, Sankar [1 ,2 ]
机构
[1] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Quantum Inst, Dept Phys, College Pk, MD 20742 USA
[3] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[4] Wuhan Inst Quantum Technol, Wuhan 430206, Peoples R China
关键词
QUANTIZED HALL CONDUCTANCE; CORRELATED STATES; BRILLOUIN-ZONE; MOTT;
D O I
10.1103/PhysRevLett.129.056804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a theory on the quantum phase diagram of AB-stacked MoTe2/WSe 2 using a self-consistent Hartree-Fock calculation performed in the plane-wave basis, motivated by the observation of topological states in this system. At filling factor v = 2 (two holes per moire unit cell), Coulomb interaction can stabilize a Z(2) topological insulator by opening a charge gap. At v = 1, the interaction induces three classes of competing states, spin density wave states, an in-plane ferromagnetic state, and a valley polarized state, which undergo first-order phase transitions tuned by an out-of-plane displacement field. The valley polarized state becomes a Chem insulator for certain displacement fields. Moreover, we predict a topological charge density wave forming a honeycomb lattice with ferromagnetism at v = 2/3. Future directions on this versatile system hosting a rich set of quantum phases are discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Transport in Z2 invariant in one and two-dimensional topological insulators models
    Lima, Leonardo S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 113 : 208 - 212
  • [32] Symmetry-breaking topological insulators in the Z2 Bose-Hubbard model
    Gonzalez-Cuadra, Daniel
    Dauphin, Alexandre
    Grzybowski, Przemyslaw R.
    Wojcik, Pawel
    Lewenstein, Maciej
    Bermudez, Alejandro
    PHYSICAL REVIEW B, 2019, 99 (04)
  • [33] Topological Exciton Density Wave in Monolayer WSe2
    Dong, Shan
    Chen, Yingda
    Qu, Hongwei
    Lou, Wen-Kai
    Chang, Kai
    PHYSICAL REVIEW LETTERS, 2025, 134 (06)
  • [34] On the Z2 topological invariant
    Drissi, L. B.
    Saidi, E. H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [35] Topological Phase Transition in MoTe2: A Review
    Paul, Suvodeep
    Talukdar, Saswata
    Singh, Ravi Shankar
    Saha, Surajit
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2023, 17 (06):
  • [36] Weyl and Dirac semimetals with Z2 topological charge
    Morimoto, Takahiro
    Furusaki, Akira
    PHYSICAL REVIEW B, 2014, 89 (23):
  • [37] Realization of Z2 Topological Photonic Insulators Made from Multilayer Transition Metal Dichalcogenides
    Isoniemi, Tommi
    Bouteyre, Paul
    Hu, Xuerong
    Benimetskiy, Fedor
    Wang, Yue
    Skolnick, Maurice S.
    Krizhanovskii, Dmitry N.
    Tartakovskii, Alexander I.
    ACS NANO, 2024, 18 (47) : 32547 - 32555
  • [38] Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice
    Mei, Feng
    Zhu, Shi-Liang
    Zhang, Zhi-Ming
    Oh, C. H.
    Goldman, N.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [39] Real-space many-body marker for correlated Z2 topological insulators
    Gilardoni, Ivan
    Becca, Federico
    Marrazzo, Antimo
    Parola, Alberto
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [40] Antiferromagnet topological insulators with AB2C Heusler structure
    Li, C.
    Lian, J. S.
    Jiang, Q.
    PHYSICAL REVIEW B, 2011, 83 (23)