Darboux Families and the Classification of Real Four-Dimensional Indecomposable Coboundary Lie Bialgebras

被引:1
|
作者
de Lucas, Javier [1 ]
Wysocki, Daniel [1 ]
机构
[1] Univ Warsaw, Dept Math Methods Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 03期
关键词
coboundary Lie bialgebra; cocommutator; Darboux polynomial; Darboux family; generalised distribution; indecomposable Lie algebra; Lie algebra automorphism; r-matrix; Vessiot– Guldberg Lie algebra;
D O I
10.3390/sym13030465
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work introduces a new concept, the so-called Darboux family, which is employed to determine coboundary Lie bialgebras on real four-dimensional, indecomposable Lie algebras, as well as geometrically analysying, and classifying them up to Lie algebra automorphisms, in a relatively easy manner. The Darboux family notion can be considered as a generalisation of the Darboux polynomial for a vector field. The classification of r-matrices and solutions to classical Yang-Baxter equations for real four-dimensional indecomposable Lie algebras is also given in detail. Our methods can further be applied to general, even higher-dimensional, Lie algebras. As a byproduct, a method to obtain matrix representations of certain Lie algebras with a non-trivial center is developed.
引用
收藏
页数:50
相关论文
共 50 条
  • [41] Ricci solitons on four-dimensional Lorentzian Lie groups
    Ferreiro-Subrido, M.
    Garcia-Rio, E.
    Vazquez-Lorenzo, R.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [42] On half conformally flat four-dimensional Lie algebras
    O. P. Gladunova
    E. D. Rodionov
    V. V. Slavskii
    Doklady Mathematics, 2012, 85 : 48 - 50
  • [43] Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
    Bouarroudj, Sofiane
    Grozman, Pavel
    Leites, Dimitry
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [44] Automorphisms of real four-dimensional Lie algebras and the invariant characterization of homogeneous 4-spaces
    Christodoulakis, T
    Papadopoulos, GO
    Dimakis, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 427 - 441
  • [45] On a classification of four-dimensional affine control systems
    V. I. Elkin
    Doklady Mathematics, 2014, 90 : 483 - 484
  • [46] On the classification of four-dimensional gradient Ricci solitons
    Yang, Fei
    Zhang, Liangdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 84
  • [47] The homotopy classification of four-dimensional toric orbifolds
    Fu, Xin
    So, Tseleung
    Song, Jongbaek
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (03) : 626 - 648
  • [48] On classification of four-dimensional nilpotent Leibniz algebras
    Demir, Ismail
    Misra, Kailash C.
    Stitzinger, Ernie
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (03) : 1012 - 1018
  • [49] On a classification of four-dimensional affine control systems
    Elkin, V. I.
    DOKLADY MATHEMATICS, 2014, 90 (01) : 483 - 484
  • [50] Lie Groups as Four-dimensional Complex Manifolds with Norden Metric
    Gribachev, Kostadin
    Teofilova, Marta
    JOURNAL OF GEOMETRY, 2008, 89 (1-2) : 34 - 47