Darboux Families and the Classification of Real Four-Dimensional Indecomposable Coboundary Lie Bialgebras

被引:1
|
作者
de Lucas, Javier [1 ]
Wysocki, Daniel [1 ]
机构
[1] Univ Warsaw, Dept Math Methods Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 03期
关键词
coboundary Lie bialgebra; cocommutator; Darboux polynomial; Darboux family; generalised distribution; indecomposable Lie algebra; Lie algebra automorphism; r-matrix; Vessiot– Guldberg Lie algebra;
D O I
10.3390/sym13030465
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work introduces a new concept, the so-called Darboux family, which is employed to determine coboundary Lie bialgebras on real four-dimensional, indecomposable Lie algebras, as well as geometrically analysying, and classifying them up to Lie algebra automorphisms, in a relatively easy manner. The Darboux family notion can be considered as a generalisation of the Darboux polynomial for a vector field. The classification of r-matrices and solutions to classical Yang-Baxter equations for real four-dimensional indecomposable Lie algebras is also given in detail. Our methods can further be applied to general, even higher-dimensional, Lie algebras. As a byproduct, a method to obtain matrix representations of certain Lie algebras with a non-trivial center is developed.
引用
收藏
页数:50
相关论文
共 50 条
  • [31] Cohomology of real four-dimensional triquadrics
    Krasnov, V. A.
    IZVESTIYA MATHEMATICS, 2012, 76 (05) : 922 - 945
  • [32] Ricci solitons on four-dimensional Lorentzian Lie groups
    M. Ferreiro-Subrido
    E. García-Río
    R. Vázquez-Lorenzo
    Analysis and Mathematical Physics, 2022, 12
  • [33] On the Cohomology of Four-Dimensional Almost Complex Lie Algebras
    Draghici, Tedi
    Leon, Hector
    JOURNAL OF LIE THEORY, 2017, 27 (01) : 43 - 49
  • [34] Ricci Solitons on Four-dimensional Neutral Lie Groups
    Haji-Badali, Ali
    Karami, Ramisa
    JOURNAL OF LIE THEORY, 2017, 27 (04) : 943 - 967
  • [35] On half conformally flat four-dimensional Lie algebras
    Gladunova, O. P.
    Rodionov, E. D.
    Slavskii, V. V.
    DOKLADY MATHEMATICS, 2012, 85 (01) : 48 - 50
  • [36] Minimal Matrix Representations of Four-Dimensional Lie Algebras
    Ghanam, R.
    Thompson, G.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (02) : 343 - 349
  • [37] Harmonic morphisms from four-dimensional Lie groups
    Gudmundsson, Sigmundur
    Svensson, Martin
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 83 : 1 - 11
  • [38] On the geometrical properties of hypercomplex four-dimensional Lie groups
    Nasehi, Mehri
    Aghasi, Mansour
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (01) : 111 - 120
  • [39] On the Finsler Geometry of Four-Dimensional Einstein Lie Groups
    Hosein Abedi Karimi
    Hamid Reza Salimi Moghaddam
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1197 - 1202
  • [40] On the Finsler Geometry of Four-Dimensional Einstein Lie Groups
    Karimi, Hosein Abedi
    Moghaddam, Hamid Reza Salimi
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 1197 - 1202