An extremum problem for polynomials and bounds for codes with given distance and diameter

被引:0
|
作者
Fazekas, G [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
关键词
Lloyd-type theorems; polynomial metric spaces; code distance; code diameter; annihilating polynomial;
D O I
10.1016/S0895-7177(03)90063-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, proving first a Lloyd-type theorem we solve an extremum problem for systems of orthogonal polynomials and show how this result can be applied to the estimation of the cardinality of codes with given minimal distance and diameter in polynomial metric spaces. A similar approach has been established among others in [1] without restriction for the diameter of the codes. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 795
页数:7
相关论文
共 50 条
  • [31] Lower bounds for the number of integral polynomials with given order of discriminants
    Bernik, Vasili
    Goetze, Friedrich
    Kukso, Olga
    ACTA ARITHMETICA, 2008, 133 (04) : 375 - 390
  • [33] Distance bounds for prescribed multiple eigenvalues of matrix polynomials
    Psarrakos, Panayiotis J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (11) : 4107 - 4119
  • [34] ON CONSTRUCTING CODES WITH GIVEN DISTANCE IN LEE-METRIC.
    Racsmany, A.
    Problems of control and information theory, 1986, 15 (05): : 377 - 384
  • [35] ON CONSTRUCTING CODES WITH GIVEN DISTANCE IN LEE-METRIC
    RACSMANY, A
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1986, 15 (05): : 377 - 384
  • [36] Upper bounds for energies of spherical codes of given cardinality and separation
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1811 - 1826
  • [37] Upper bounds for energies of spherical codes of given cardinality and separation
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Designs, Codes and Cryptography, 2020, 88 : 1811 - 1826
  • [38] Improving diameter bounds for distance-regular graphs
    Bang, S
    Hiraki, A
    Koolen, JH
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (01) : 79 - 89
  • [39] Diameter bounds for geometric distance-regular graphs
    Bang, Sejeong
    DISCRETE MATHEMATICS, 2018, 341 (01) : 253 - 260
  • [40] MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES
    HELGERT, HJ
    STINAFF, RD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (03) : 344 - 356