An extremum problem for polynomials and bounds for codes with given distance and diameter

被引:0
|
作者
Fazekas, G [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
关键词
Lloyd-type theorems; polynomial metric spaces; code distance; code diameter; annihilating polynomial;
D O I
10.1016/S0895-7177(03)90063-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, proving first a Lloyd-type theorem we solve an extremum problem for systems of orthogonal polynomials and show how this result can be applied to the estimation of the cardinality of codes with given minimal distance and diameter in polynomial metric spaces. A similar approach has been established among others in [1] without restriction for the diameter of the codes. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 795
页数:7
相关论文
共 50 条
  • [21] Bounds on Spectra of Codes with Known Dual Distance
    Krasikov I.
    Litsyn S.
    Designs, Codes and Cryptography, 1998, 13 (3) : 285 - 297
  • [22] Bounds for binary codes with narrow distance distributions
    Roth, Ron M.
    Seroussi, Gadiel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (08) : 2760 - 2768
  • [23] Lower bounds on minimal distance of evaluation codes
    Ştefan O. Tohǎneanu
    Applicable Algebra in Engineering, Communication and Computing, 2009, 20 : 351 - 360
  • [24] Upper bounds on the minimum distance of spherical codes
    Boyvalenkov, PG
    Danev, DP
    Bumova, SP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1576 - 1581
  • [25] Distance bounds for an ensemble of LDPC convolutional codes
    Sridharan, Arvind
    Truhachev, Dmitri
    Lentmaier, Michael
    Costello, Daniel J., Jr.
    Zigangirov, Kamil Sh.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) : 4537 - 4555
  • [26] Bounds on distance distributions in codes of known size
    Ashikhmin, A
    Cohen, G
    Krivelevich, M
    Litsyn, S
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 486 - 486
  • [27] Bounds on the minimum distance of the duals of BCH codes
    Augot, D
    LevyditVehel, F
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1257 - 1260
  • [28] Bounds on distance distributions in codes of known size
    Ashikhmin, AE
    Cohen, GD
    Krivelevich, M
    Litsyn, SN
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 250 - 258
  • [29] Flag codes: Distance vectors and cardinality bounds
    Alonso-Gonzalez, Clementa
    Navarro-Perez, Miguel Angel
    Soler-Escriva, Xaro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 27 - 62
  • [30] Bounds on the Rate and Minimum Distance of Codes with Availability
    Balaji, S. B.
    Kumar, P. Vijay
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,