An extremum problem for polynomials and bounds for codes with given distance and diameter

被引:0
|
作者
Fazekas, G [1 ]
机构
[1] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
关键词
Lloyd-type theorems; polynomial metric spaces; code distance; code diameter; annihilating polynomial;
D O I
10.1016/S0895-7177(03)90063-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, proving first a Lloyd-type theorem we solve an extremum problem for systems of orthogonal polynomials and show how this result can be applied to the estimation of the cardinality of codes with given minimal distance and diameter in polynomial metric spaces. A similar approach has been established among others in [1] without restriction for the diameter of the codes. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 795
页数:7
相关论文
共 50 条
  • [1] An extremum problem for polynomials related to codes and designs
    D. V. Gorbachev
    V. I. Ivanov
    Mathematical Notes, 2000, 67 : 433 - 438
  • [2] An extremum problem for polynomials related to codes and designs
    Gorbachev, DV
    Ivanov, VI
    MATHEMATICAL NOTES, 2000, 67 (3-4) : 433 - 438
  • [3] Bounds on distance distributions in codes of given size
    Cohen, G
    Krivelevich, M
    Litsyn, S
    COMMUNICATIONS, INFORMATION AND NETWORK SECURITY, 2003, 712 : 33 - 41
  • [4] EXTREMUM PROBLEM FOR POLYNOMIALS
    FREUD, G
    ACTA SCIENTIARUM MATHEMATICARUM, 1971, 32 (3-4): : 287 - &
  • [5] AN EXTREMUM PROBLEM CONCERNING ALGEBRAIC POLYNOMIALS
    ERDOS, P
    VARMA, AK
    ACTA MATHEMATICA HUNGARICA, 1986, 47 (1-2) : 137 - 143
  • [6] Bounds on permutation codes of distance four
    Dukes, P.
    Sawchuck, N.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (01) : 143 - 158
  • [7] Bounds on the minimum distance of Goppa codes
    Maharaj, Hiren
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (07) : 3256 - 3259
  • [8] Bounds on permutation codes of distance four
    P. Dukes
    N. Sawchuck
    Journal of Algebraic Combinatorics, 2010, 31 : 143 - 158
  • [9] FREE DISTANCE BOUNDS FOR CONVOLUTIONAL CODES
    COSTELLO, DJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (03) : 356 - 365
  • [10] Distance Bounds for Generalized Bicycle Codes
    Wang, Renyu
    Pryadko, Leonid P.
    SYMMETRY-BASEL, 2022, 14 (07):