Classification of Indonesian quote on Twitter using Naive Bayes

被引:0
|
作者
Rachmadany, A. [1 ]
Pranoto, Y. M. [2 ]
Gunawan [2 ]
Multazam, M. T. [3 ]
Nandiyanto, A. B. D. [4 ]
Abdullah, A. G. [5 ]
Widiaty, I. [6 ]
机构
[1] Univ Muhammadiyah Sidoarjo, Fak Tekn Informat, Sidoarjo, Indonesia
[2] Sekolah Tinggi Tekn Surabaya, Surabaya, Indonesia
[3] Univ Muhammadiyah Sidoarjo, Fak Hukum, Sidoarjo, Indonesia
[4] Univ Pendidikan Indonesia, Dept Kimia, Jl Dr Setiabudi 229, Bandung 40154, Jawa Barat, Indonesia
[5] Univ Pendidikan Indonesia, Dept Pendidikan Tekn Elekt, Jl Dr Setiabudi 229, Bandung 40154, Jawa Barat, Indonesia
[6] Univ Pendidikan Indonesia, Dept Pendidikan Kesejahteraan Keluarga, Jl Dr Setiabudi 229, Bandung 40154, Jawa Barat, Indonesia
关键词
D O I
10.1088/1757-899X/288/1/012162
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quote is sentences made in the hope that someone can become strong personalities, individuals who always improve themselves to move forward and achieve success. Social media is a place for people to express his heart to the world that sometimes the expression of the heart is quotes. Here, the purpose of this study was to classify Indonesian quote on Twitter using Naive Bayes. This experiment uses text classification from Twitter data written by Twitter users which are quote then classification again grouped into 6 categories (Love, Life, Motivation, Education, Religion, Others). The language used is Indonesian. The method used is Naive Bayes. The results of this experiment are a web application collection of Indonesian quote that have been classified. This classification gives the user ease in finding quote based on class or keyword. For example, when a user wants to find a 'motivation' quote, this classification would be very useful.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Classification of cellular phone mobility using Naive Bayes model
    Puntumapon, K.
    Pattara-atikom, W.
    2008 IEEE 67TH VEHICULAR TECHNOLOGY CONFERENCE-SPRING, VOLS 1-7, 2008, : 3021 - 3025
  • [42] Finding The Available Website Name By Using Naive Bayes Classification
    Kane, Kanokphon
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 624 - 629
  • [43] Webpages Classification with Phishing Content Using Naive Bayes Algorithm
    Rodriguez Rodriguez, Jorge Enrique
    Medina Garcia, Victor Hugo
    Perez Castillo, Nelson
    KNOWLEDGE MANAGEMENT IN ORGANIZATIONS, KMO 2019, 2019, 1027 : 249 - 258
  • [44] Feature subset selection using naive Bayes for text classification
    Feng, Guozhong
    Guo, Jianhua
    Jing, Bing-Yi
    Sun, Tieli
    PATTERN RECOGNITION LETTERS, 2015, 65 : 109 - 115
  • [45] The Comparation of Text Mining With Naive Bayes Classifier, Nearest Neighbor, and Decision Tree to Detect Indonesian Swear Words on Twitter
    Zulfikar, Wildan Budiawan
    Irfan, Mohamad
    Alam, Cecep Nurul
    Indra, Muhammad
    2017 5TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT (CITSM 2017), 2017, : 50 - 54
  • [46] Classification of Article Knowledge Field using Naive Bayes Classifier
    Atmadja, Aldy Rialdy
    Irfan, Mohamad
    Halim, Abdul
    Sarbini
    PROCEEDING OF 2020 6TH INTERNATIONAL CONFERENCE ON WIRELESS AND TELEMATICS (ICWT), 2020,
  • [47] Halftone Image Classification Using LMS Algorithm and Naive Bayes
    Liu, Yun-Fu
    Guo, Jing-Ming
    Lee, Jiann-Der
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (10) : 2837 - 2847
  • [48] Survey of improving naive Bayes for classification
    Jiang, Liangxiao
    Wang, Dianhong
    Cai, Zhihua
    Yan, Xuesong
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2007, 4632 : 134 - +
  • [49] Naive Bayes Classification of Uncertain Data
    Ren, Jiangtao
    Lee, Sau Dan
    Chen, Xianlu
    Kao, Ben
    Cheng, Reynold
    Cheung, David
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 944 - +
  • [50] Naive Bayes Approach for Website Classification
    Rajalakshmi, R.
    Aravindan, C.
    INFORMATION TECHNOLOGY AND MOBILE COMMUNICATION, 2011, 147 : 323 - 326