Classification of Indonesian quote on Twitter using Naive Bayes

被引:0
|
作者
Rachmadany, A. [1 ]
Pranoto, Y. M. [2 ]
Gunawan [2 ]
Multazam, M. T. [3 ]
Nandiyanto, A. B. D. [4 ]
Abdullah, A. G. [5 ]
Widiaty, I. [6 ]
机构
[1] Univ Muhammadiyah Sidoarjo, Fak Tekn Informat, Sidoarjo, Indonesia
[2] Sekolah Tinggi Tekn Surabaya, Surabaya, Indonesia
[3] Univ Muhammadiyah Sidoarjo, Fak Hukum, Sidoarjo, Indonesia
[4] Univ Pendidikan Indonesia, Dept Kimia, Jl Dr Setiabudi 229, Bandung 40154, Jawa Barat, Indonesia
[5] Univ Pendidikan Indonesia, Dept Pendidikan Tekn Elekt, Jl Dr Setiabudi 229, Bandung 40154, Jawa Barat, Indonesia
[6] Univ Pendidikan Indonesia, Dept Pendidikan Kesejahteraan Keluarga, Jl Dr Setiabudi 229, Bandung 40154, Jawa Barat, Indonesia
关键词
D O I
10.1088/1757-899X/288/1/012162
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quote is sentences made in the hope that someone can become strong personalities, individuals who always improve themselves to move forward and achieve success. Social media is a place for people to express his heart to the world that sometimes the expression of the heart is quotes. Here, the purpose of this study was to classify Indonesian quote on Twitter using Naive Bayes. This experiment uses text classification from Twitter data written by Twitter users which are quote then classification again grouped into 6 categories (Love, Life, Motivation, Education, Religion, Others). The language used is Indonesian. The method used is Naive Bayes. The results of this experiment are a web application collection of Indonesian quote that have been classified. This classification gives the user ease in finding quote based on class or keyword. For example, when a user wants to find a 'motivation' quote, this classification would be very useful.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Metagenomic Phylogenetic Classification Using Improved Naive Bayes
    Komatsu, Yuki
    Ishida, Takashi
    Akiyama, Yutaka
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 262 - 270
  • [22] Data Classification Using Rough Sets and Naive Bayes
    Al-Aidaroos, Khadija
    Abu Bakar, Azuraliza
    Othman, Zalinda
    ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 : 134 - 142
  • [23] Measurement Classification Using Hybrid Weighted Naive Bayes
    Hamblin, David
    Wang, Dali
    Chen, Gao
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA), 2016, : 6 - 11
  • [24] Classification of web documents using a naive Bayes method
    Wang, Y
    Hodges, J
    Tang, B
    15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 560 - 564
  • [25] Using Naive Bayes to coordinate the classification of web pages
    Fan, Yan
    Zheng, Cheng
    Wang, Qing-Yi
    Cai, Qing-Sheng
    Liu, Jie
    2001, Chinese Academy of Sciences (12): : 1386 - 1392
  • [26] Naive Bayes classification in R
    Zhang, Zhongheng
    ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (12) : 1 - 5
  • [27] Improving naive bayes for classification
    Jiang L.
    Cai Z.
    Wang D.
    International Journal of Computers and Applications, 2010, 32 (03) : 328 - 332
  • [28] Sentiment Analysis on Twitter Data-set using Naive Bayes Algorithm
    Parveen, Huma
    Pandey, Shikha
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2016, : 416 - 419
  • [29] Study of Hoax News Detection Using Naive Bayes Classifier in Indonesian Language
    Pratiwi, Inggrid Yanuar Risca
    Asmara, Rosa Andrie
    Rahutomo, Faisal
    PROCEEDINGS OF 2017 11TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEMS (ICTS), 2017, : 73 - 78
  • [30] K-Nearest Neighbor and Naive Bayes Classifier Comparison for Individual Character Classification on Twitter
    Utami, Ema
    Raharjo, Suwanto
    Hartanto, Anggit Dwi
    Adi, Sumarni
    Ichsan, Aminudin Noor
    PROCEEDINGS OF ICORIS 2020: 2020 THE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEM (ICORIS), 2020, : 63 - 67