The improved Ginzburg-Landau technique

被引:0
|
作者
Mannarelli, Massimo [1 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Via G Acitelli 22, I-67100 Assergi, AQ, Italy
关键词
COLOR; SUPERCONDUCTIVITY;
D O I
10.1051/epjconf/201819200021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss an innovative method for the description of inhomogeneous phases designed to improve the standard Ginzburg-Landau expansion. The method is characterized by two key ingredients. The first one is a moving average of the order parameter designed to account for the long-wavelength modulations of the condensate. The second one is a sum of the high frequency modes, to improve the description of the phase transition to the restored phase. The method is applied to compare the free energies of 1D and 2D inhomogeneous structures arising in the chirally symmetric broken phase.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A geometric Ginzburg-Landau problem
    Moser, Roger
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 771 - 792
  • [32] The Ginzburg-Landau theory in application
    Milosevic, M. V.
    Geurts, R.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 (19): : 791 - 795
  • [33] Discrete Ginzburg-Landau solitons
    Efremidis, NK
    Christodoulides, DN
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [34] THE GINZBURG-LANDAU MANIFOLD IS AN ATTRACTOR
    ECKHAUS, W
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (03) : 329 - 348
  • [35] Ginzburg-Landau Separation Problems
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 239 - 243
  • [36] INTERMITTENCY IN THE GINZBURG-LANDAU THEORY
    HWA, RC
    PAN, J
    PHYSICS LETTERS B, 1992, 297 (1-2) : 35 - 38
  • [37] A reduced Ginzburg-Landau model in
    Fan, Jishan
    Jing, Lulu
    Nakamura, Gen
    Tang, Tong
    APPLICABLE ANALYSIS, 2021, 100 (16) : 3629 - 3634
  • [38] NONLOCAL GINZBURG-LANDAU EQUATIONS
    XU, HH
    TSAI, CH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1990, 13 (02) : 153 - 166
  • [39] On moving Ginzburg-Landau vortices
    Wang, CY
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2004, 12 (05) : 1185 - 1199
  • [40] On the Ginzburg-Landau energy with weight
    Univ. Pierre et Marie Curie, lab. analyse numerique, 75252 Paris, France
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 2 (171-184):