The improved Ginzburg-Landau technique

被引:0
|
作者
Mannarelli, Massimo [1 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Via G Acitelli 22, I-67100 Assergi, AQ, Italy
关键词
COLOR; SUPERCONDUCTIVITY;
D O I
10.1051/epjconf/201819200021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss an innovative method for the description of inhomogeneous phases designed to improve the standard Ginzburg-Landau expansion. The method is characterized by two key ingredients. The first one is a moving average of the order parameter designed to account for the long-wavelength modulations of the condensate. The second one is a sum of the high frequency modes, to improve the description of the phase transition to the restored phase. The method is applied to compare the free energies of 1D and 2D inhomogeneous structures arising in the chirally symmetric broken phase.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ginzburg-Landau theory of a supersolid
    Ye, Jinwu
    PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [22] Homogenization of a Ginzburg-Landau functional
    Berlyand, L
    Cioranescu, D
    Golovaty, D
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) : 87 - 92
  • [23] Ginzburg-Landau equations and their generalizations
    Sergeev, Armen
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (02): : 294 - 305
  • [24] The energy of Ginzburg-Landau vortices
    Ovchinnikov, YN
    Sigal, IM
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 : 153 - 178
  • [25] Controllability of the Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (3-4) : 167 - 172
  • [26] Ginzburg-Landau vortex analogues
    A. V. Domrin
    Theoretical and Mathematical Physics, 2000, 124 : 872 - 886
  • [27] A Ginzburg-Landau model in superfluidity
    Bertil, Alessia
    Berti, Valeria
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2012, 3 (02):
  • [28] AN ESTIMATE FOR GINZBURG-LANDAU MINIMIZERS
    MIRONESCU, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (09): : 941 - 943
  • [29] The Jacobian and the Ginzburg-Landau energy
    Robert L. Jerrard
    Halil Mete Soner
    Calculus of Variations and Partial Differential Equations, 2002, 14 : 151 - 191
  • [30] GINZBURG-LANDAU THEORY FOR SUPERCONDUCTORS
    CYROT, M
    REPORTS ON PROGRESS IN PHYSICS, 1973, 36 (02) : 103 - 158