Thermoelectric properties of anisotropic semiconductors

被引:43
|
作者
Bies, WE [1 ]
Radtke, RJ
Ehrenreich, H
Runge, E
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Humboldt Univ, Inst Phys, AG Halbleitertheorie, D-10117 Berlin, Germany
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 08期
关键词
D O I
10.1103/PhysRevB.65.085208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
General effective transport coefficients and the thermoelectric figure of merit ZT for anisotropic systems are derived. Sizable induced transverse fields on surfaces perpendicular to the current flow are shown to reduce the effective transport coefficients. A microscopic electronic model relevant for multivalleyed materials with parabolic bands is considered in detail. Within the effective mass and relaxation-time approximations but neglecting the lattice thermal conductivity kappa(l), the thermopower and Lorenz number are shown to be independent of the tensorial structure of the transport coefficients and are therefore isotropic. ZT is also isotropic for vanishing lattice thermal conductivity kappa(l). A similar result holds in lower dimensions. For nonvanishing but sufficiently isotropic kappa(l), ZT is ordinarily maximal along the direction of highest electrical conductivity a. More general numerical calculations suggest that maximal ZT occurs along the principal direction with the largest sigma/kappa(l). An explicit bound on ZT is derived. Consideration of the Esaki-Tsu model shows that nonparabolic dispersion in superlattices has little effect on the thermopower at the carrier concentrations which maximize ZT. However, strong anisotropies develop when the chemical potential exceeds the miniband width.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] Towards modeling thermoelectric properties of anisotropic polycrystalline materials
    Basaula, Dharma
    Daeipour, Mohamad
    Kuna, Lukasz
    Mangeri, John
    Feygelson, Boris
    Nakhmanson, Serge
    ACTA MATERIALIA, 2022, 228
  • [32] Highly anisotropic thermoelectric properties of black phosphorus crystals
    Zeng, Qingsheng
    Sun, Bo
    Du, Kezhao
    Zhao, Weiyun
    Yu, Peng
    Zhu, Chao
    Xia, Juan
    Chen, Yu
    Cao, Xun
    Yan, Qingyu
    Shen, Zexiang
    Yu, Ting
    Long, Yi
    Koh, Yee Kan
    Liu, Zheng
    2D MATERIALS, 2019, 6 (04)
  • [33] Highly anisotropic thermoelectric properties of carbon sulfide monolayers
    Gonzalez, J. W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (12)
  • [34] Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe
    Li, Yulong
    Shi, Xun
    Ren, Dudi
    Chen, Jikun
    Chen, Lidong
    ENERGIES, 2015, 8 (07): : 6275 - 6285
  • [35] Thermoelectric properties of β-Fe1-xCoxSi2 semiconductors
    Tani, J.-I.
    Kido, H.
    2001, Japan Society of Applied Physics (40):
  • [36] Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures
    Ovsyannikov, SV
    Shchennikov, VV
    PHYSICA B-CONDENSED MATTER, 2004, 344 (1-4) : 190 - 194
  • [37] Investigation of thermoelectric properties of chalcogenide semiconductors from first principles
    Sevik, C.
    Cagin, T.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (12)
  • [38] Texture influence on the forming of thermoelectric properties of pressed semiconductors.
    Anatychuk, LI
    Kosyachenko, SV
    Melnichuk, SV
    PROCEEDINGS ICT '96 - FIFTEENTH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 1996, : 191 - 193
  • [39] Thermoelectric properties of wide bandgap semiconductors and nano-structures
    Lu, Na
    Melton, Andrew
    Hurwitz, Elisa
    Kucukgok, Bahadir
    Ferguson, Ian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [40] Thermoelectric properties of Ce-based Kondo semimetals and semiconductors
    Takabatake, T
    Sasakawa, T
    Kitagawa, J
    Suemitsu, T
    Echizen, Y
    Umeo, K
    Sera, M
    Bando, Y
    PHYSICA B-CONDENSED MATTER, 2003, 328 (1-2) : 53 - 57