Towards modeling thermoelectric properties of anisotropic polycrystalline materials

被引:1
|
作者
Basaula, Dharma [1 ]
Daeipour, Mohamad [2 ,3 ]
Kuna, Lukasz [4 ]
Mangeri, John [5 ]
Feygelson, Boris [6 ]
Nakhmanson, Serge [1 ,2 ,3 ]
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[3] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA
[4] US Naval Res Lab, Washington, DC 20375 USA
[5] Luxembourg Inst Sci & Technol, Mat Res & Technol Dept, L-4362 Esch Sur Alzette, Luxembourg
[6] US Naval Res Lab, Elect Sci & Technol Div, Washington, DC 20375 USA
关键词
Thermoelectric; Polycrystalline; Theory; Finite element modeling; Mesoscale; NANOSTRUCTURED THERMOELECTRICS; NUMERICAL-SIMULATION; PERFORMANCE; FILMS;
D O I
10.1016/j.actamat.2022.117743
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the development of a finite element method based computational framework for evaluating thermoelectric properties of polycrystalline nanostructured materials and composites at mesoscale. This effort was advanced by formulation, testing and (if possible) validation of thermoelectric 'benchmark problems,' that progressed from simple to more advanced cases. The following benchmark problems were investigated: (a) effective Seebeck effect in a thermocouple, (b) Peltier heating and cooling at a single interface between two materials with different Seebeck coefficients, (c) coupled heat and electrical current transport through an anisotropic polycrystalline material. Excellent agreement with prior experimental or computational results was observed for the cases (a) and (b). The developed framework establishes the capabilities necessary to elucidate the workings of thermoelectric effects at the mesoscale level and could provide new opportunities for improvement of operational efficiency of nanoengineered thermoelectric materials and composites.(c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] THERMOELECTRIC PROPERTIES OF POLYCRYSTALLINE MATERIALS
    BALAGUROV, BY
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1985, 19 (05): : 597 - 598
  • [2] Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe
    Li, Yulong
    Shi, Xun
    Ren, Dudi
    Chen, Jikun
    Chen, Lidong
    ENERGIES, 2015, 8 (07): : 6275 - 6285
  • [3] Modeling Anisotropic Transport in Polycrystalline Battery Materials
    Daubner, Simon
    Weichel, Marcel
    Hoffrogge, Paul W.
    Schneider, Daniel
    Nestler, Britta
    BATTERIES-BASEL, 2023, 9 (06):
  • [4] Anisotropic thermoelectric transport properties in polycrystalline SnSe2 *
    Li, Caiyun
    He, Wenke
    Wang, Dongyang
    Zhao, Li-Dong
    CHINESE PHYSICS B, 2021, 30 (06)
  • [5] Anisotropic thermoelectric transport properties in polycrystalline SnSe2
    李彩云
    何文科
    王东洋
    赵立东
    Chinese Physics B, 2021, (06) : 524 - 531
  • [6] Modeling brittle fracture due to anisotropic thermal expansion in polycrystalline materials
    Rezwan, Aashique A.
    Jokisaari, Andrea M.
    Tonks, Michael R.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 194
  • [7] MATHEMATICAL MODELING OF PHYSICAL PROPERTIES OF ANISOTROPIC MATERIALS
    Belokon, Yuriy
    Yavtushenko, Aleksander
    Protsenko, Victor
    Bondarenko, Yulia
    Cheilytko, Andrii
    29TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2020), 2020, : 440 - 445
  • [8] Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials
    Thanh-Tung Nguyen
    Julien Réthoré
    Julien Yvonnet
    Marie-Christine Baietto
    Computational Mechanics, 2017, 60 : 289 - 314
  • [9] Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials
    Thanh-Tung Nguyen
    Rethore, Julien
    Yvonnet, Julien
    Baietto, Marie-Christine
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 289 - 314
  • [10] ORIENTED MOSAIC MODEL ANALYSIS OF ANISOTROPIC THERMOELECTRIC PROPERTIES OF HETEROGENEOUS MATERIALS
    WADA, H
    OKAMOTO, Y
    MIYAKAWA, T
    IRIE, T
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (04) : 881 - 888