Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [31] Inequalities for relative operator entropy in terms of Tsallis' entropy
    Dragomir, S. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (04)
  • [32] Temperature of nonextensive systems: Tsallis entropy as Clausius entropy
    Abe, Sumiyoshi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (02) : 430 - 434
  • [33] Projective Power Entropy and Maximum Tsallis Entropy Distributions
    Eguchi, Shinto
    Komori, Osamu
    Kato, Shogo
    ENTROPY, 2011, 13 (10): : 1746 - 1764
  • [34] Relative entropy and Tsallis entropy of two accretive operators
    Raissouli, Mustapha
    Moslehian, Mohammad Sal
    Furuichi, Shigeru
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (06) : 687 - 693
  • [35] Uncertainty relations in terms of the Tsallis entropy
    Wilk, Grzegorz
    Wlodarczyk, Zbigniew
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [36] Comment on 'Source coding with Tsallis entropy'
    Bercher, J. -F.
    ELECTRONICS LETTERS, 2011, 47 (10) : 597 - 597
  • [37] Some properties of cumulative Tsallis entropy
    Cali, Camilla
    Longobardi, Maria
    Ahmadi, Jafar
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 1012 - 1021
  • [38] Monitoring brain injury with Tsallis Entropy
    Tong, S
    Bezerianos, A
    Zhu, Y
    Geocadin, R
    Hanley, D
    Thakor, N
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 1926 - 1928
  • [39] TSALLIS ENTROPY COMPOSITION AND THE HEISENBERG GROUP
    Kalogeropoulos, Nikos
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (07)
  • [40] ESTIMATES FOR TSALLIS RELATIVE OPERATOR ENTROPY
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Minculete, Nicusor
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1079 - 1088