Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [21] Tsallis δ-entropy in an accelerating BIon
    Ghaforyan, Hussein
    Shoorvazi, Somayeh
    Sepehri, Alireza
    Ebrahimzadeh, Majid
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (08):
  • [22] The Tsallis entropy of natural information
    Sneddon, Robert
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (01) : 101 - 118
  • [23] Tsallis entropy: how unique?
    S. Abe
    Continuum Mechanics and Thermodynamics, 2004, 16 : 237 - 244
  • [24] Source coding with Tsallis entropy
    Chapeau-Blondeau, F.
    Delahaies, A.
    Rousseau, D.
    ELECTRONICS LETTERS, 2011, 47 (03) : 187 - U677
  • [25] Tsallis entropy: how unique?
    Abe, S
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2004, 16 (03) : 237 - 244
  • [26] STELLAR POLYTROPES AND TSALLIS ENTROPY
    PLASTINO, AR
    PLASTINO, A
    PHYSICS LETTERS A, 1993, 174 (5-6) : 384 - 386
  • [27] Lagrangian formulation of the Tsallis entropy
    D'Agostino, Rocco
    Luciano, Giuseppe Gaetano
    PHYSICS LETTERS B, 2024, 857
  • [28] Inflation based on the Tsallis entropy
    Zeinab Teimoori
    Kazem Rezazadeh
    Abasat Rostami
    The European Physical Journal C, 84
  • [29] DYNAMICAL ASPECTS OF TSALLIS ENTROPY
    PLASTINO, AR
    PLASTINO, A
    PHYSICA A, 1994, 202 (3-4): : 438 - 448
  • [30] Projections maximizing Tsallis entropy
    Harremoes, Peter
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 90 - 95