Symbolic Sequences and Tsallis Entropy

被引:5
|
作者
Ribeiro, H. V. [1 ,2 ]
Lenzi, E. K. [1 ,2 ]
Mendes, R. S. [1 ,2 ]
Mendes, G. A. [3 ,4 ]
da Silva, L. R. [3 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Maringa, Natl Inst Sci & Technol Complex Syst, BR-87020900 Maringa, Parana, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59072970 Natal, RN, Brazil
关键词
Symbolic sequences; Long-range correlations; Tsallis entropy; Non-usual diffusion; LONG-RANGE CORRELATIONS; DYNAMICS;
D O I
10.1590/S0103-97332009000400018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address this work to investigate symbolic sequences with long-range correlations by using computational simulation. We analyze sequences with two, three and four symbols that could be repeated l times, with the probability distribution p(l) proportional to 1/l(mu). For these sequences, we verified that the usual entropy increases more slowly when the symbols are correlated and the Tsallis entropy exhibits, for a suitable choice of q, a linear behavior. We also study the chain as a random walk-like process and observe a nonusual diffusive behavior depending on the values of the parameter mu.
引用
收藏
页码:444 / 447
页数:4
相关论文
共 50 条
  • [1] ENTROPY OF SYMBOLIC SEQUENCES - THE ROLE OF CORRELATIONS
    EBELING, W
    NICOLIS, G
    EUROPHYSICS LETTERS, 1991, 14 (03): : 191 - 196
  • [2] Entropy estimation of very short symbolic sequences
    Lesne, Annick
    Blanc, Jean-Luc
    Pezard, Laurent
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [3] A non extensive approach to the entropy of symbolic sequences
    Buiatti, M
    Grigolini, P
    Palatella, L
    PHYSICA A, 1999, 268 (1-2): : 214 - 224
  • [4] On uniqueness theorems for Tsallis entropy and Tsallis relative entropy
    Furuichi, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) : 3638 - 3645
  • [5] The Tsallis Entropy as a Social Entropy
    Nieto-Chaupis, Huber
    PROCEEDINGS OF THE 2019 IEEE 1ST SUSTAINABLE CITIES LATIN AMERICA CONFERENCE (SCLA), 2019,
  • [6] Superconvergence of topological entropy in the symbolic dynamics of substitution sequences
    Zaporski, Leon
    Flicker, Felix
    SCIPOST PHYSICS, 2019, 7 (02):
  • [7] On Conditional Tsallis Entropy
    Teixeira, Andreia
    Souto, Andre
    Antunes, Luis
    ENTROPY, 2021, 23 (11)
  • [8] Conditional Tsallis Entropy
    Manije, Sanei Tabass
    Gholamreza, Mohtashami Borzadaran
    Mohammad, Amini
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2013, 13 (02) : 37 - 42
  • [9] Tsallis Entropy and Hyperbolicity
    Kalogeropoulos, Nikos
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1784 - 1786
  • [10] Is the Tsallis entropy stable?
    Lutsko, J. F.
    Boon, J. P.
    Grosfils, P.
    EPL, 2009, 86 (04)