共 50 条
Integrating high-temperature proton exchange membrane fuel cell with duplex thermoelectric cooler for electricity and cooling cogeneration
被引:8
|作者:
Qin, Yuan
[1
]
Zhang, Houcheng
[1
]
Zhang, Xinfeng
[2
]
机构:
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
[2] Zhejiang Univ City Coll, Sch Informat & Elect Engn, Hangzhou 310015, Peoples R China
关键词:
High-temperature proton exchange;
membrane fuel cell;
Duplex thermoelectric cooler;
Thomson effect;
Energetic analysis;
Exergetic analysis;
WASTE HEAT;
PERFORMANCE OPTIMIZATION;
POWER OUTPUT;
GENERATOR;
SYSTEM;
DESIGN;
MANAGEMENT;
ENERGY;
MODEL;
D O I:
10.1016/j.ijhydene.2022.09.041
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
To harvest the waste heat from exothermic reaction processes, a novel hybrid system model mainly incorporating a high-temperature proton exchange membrane fuel cell (HT-PEMFC) and a duplex thermoelectric cooler is conceptualized to theoretically predict the potential performance limit. The duplex thermoelectric cooler is composed of a thermo-electric generator (TEG) and a thermoelectric cooler (TEC), where the TEG harvests the waste heat to generate electricity and the TEC utilizes the generated electricity for cooling production. A mathematical model is established to estimate the proposed system per-formance from both exergetic and energetic perspectives considering various irreversible effects, from which effectiveness and practicality of the proposed system can be examined. The hybrid system maximal output power density allows 14.1% greater than that of the basic HT-PEMFC, whereas the according destruction rate density of exergy is decreased by 7.7%. The feasibility and effectiveness of the proposed system configuration are verified. Moreover, substantial parametric analyses indicate that the proposed system performance can be improved by elevating the HT-PEMFC operating temperature, inlet relative humidity and doping level while worsened by enhancing the leak current density, electrolyte thickness and Thomson coefficient. The results acquired may be helpful in designing and optimizing such an actual hybrid system.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:38703 / 38720
页数:18
相关论文