Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell

被引:8
|
作者
Su, Ay [2 ]
Ferng, Yuh Ming [1 ]
Shih, Jah Ching [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsingchu 30013, Taiwan
[2] Yuan Ze Univ, Dept Mech Engn, Fuel Cell Ctr, Chungli 32026, Taiwan
关键词
High-temperature PEMFC; Performance curve; CFD model; POLYMER ELECTROLYTE MEMBRANES; COMPOSITE MEMBRANES; MATHEMATICAL-MODEL; OPERATION; ACID; 100-DEGREES-C; CHALLENGES; TRANSPORT; CATALYST; SILICA;
D O I
10.1016/j.applthermaleng.2009.05.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal-hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3409 / 3417
页数:9
相关论文
共 50 条
  • [1] Performance Investigation of High-Temperature Proton Exchange Membrane Fuel Cell
    Igbal, Mohamad Zaqwan Mohd
    Rosli, Masli Irwan
    Panuh, Dedikarni
    JURNAL KEJURUTERAAN, 2018, 1 (04): : 1 - 6
  • [2] Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell
    Wu, Qixing
    Li, Haiyang
    Yuan, Wenxiang
    Luo, Zhongkuan
    Wang, Fang
    Sun, Hongyuan
    Zhao, Xuxin
    Fu, Huide
    APPLIED ENERGY, 2015, 160 : 146 - 152
  • [3] Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell
    Li, Dongxu
    Li, Yanju
    Ma, Zheshu
    Zheng, Meng
    Lu, Zhanghao
    MEMBRANES, 2022, 12 (01)
  • [4] Dynamic modeling of a high-temperature proton exchange membrane fuel cell with a fuel processor
    Park, Jaeman
    Min, Kyoungdoug
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (20) : 10683 - 10696
  • [5] Exergy Analysis of High-Temperature Proton Exchange Membrane Fuel Cell Systems
    Ye, Lin
    Jiao, Kui
    Du, Qing
    Yin, Yan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (09) : 917 - 929
  • [6] Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems
    Authayanun, Suthida
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    ENERGY, 2014, 68 : 989 - 997
  • [7] Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System
    Li, Yanju
    Li, Dongxu
    Ma, Zheshu
    Zheng, Meng
    Lu, Zhanghao
    MEMBRANES, 2022, 12 (01)
  • [8] Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid
    Kwon, Yungjung
    Kim, Tae Young
    Yoo, Duck Young
    Hong, Suk-Gi
    Park, Jung Ock
    JOURNAL OF POWER SOURCES, 2009, 188 (02) : 463 - 467
  • [9] Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell
    Guo, Xinjia
    Xu, Bing
    Ma, Zheshu
    Li, Yanju
    Li, Dongxu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [10] Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell
    Li, Dongxu
    Li, Siwei
    Ma, Zheshu
    Xu, Bing
    Lu, Zhanghao
    Li, Yanju
    Zheng, Meng
    MATHEMATICS, 2021, 9 (12)