Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell

被引:8
|
作者
Su, Ay [2 ]
Ferng, Yuh Ming [1 ]
Shih, Jah Ching [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsingchu 30013, Taiwan
[2] Yuan Ze Univ, Dept Mech Engn, Fuel Cell Ctr, Chungli 32026, Taiwan
关键词
High-temperature PEMFC; Performance curve; CFD model; POLYMER ELECTROLYTE MEMBRANES; COMPOSITE MEMBRANES; MATHEMATICAL-MODEL; OPERATION; ACID; 100-DEGREES-C; CHALLENGES; TRANSPORT; CATALYST; SILICA;
D O I
10.1016/j.applthermaleng.2009.05.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal-hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3409 / 3417
页数:9
相关论文
共 50 条
  • [31] Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system
    Authayanun, Suthida
    Saebea, Dang
    Patcharavorachot, Yaneeporn
    Arpornwichanop, Amornchai
    ENERGY, 2015, 80 : 331 - 339
  • [32] Start-up characteristics of high-temperature proton exchange membrane fuel cell stacks based on flat heat pipes
    Qian Z.
    Wang S.
    Zhu Y.
    Yue L.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (04): : 1754 - 1763
  • [33] Guanidinium/Hydroxyl-Functionalized Polybenzimidazole for High-Temperature Proton Exchange Membrane Fuel Cell Applications
    Ji, Jiayuan
    Han, Yuyang
    Xu, Fei
    Chu, Fuqiang
    Li, Yanting
    Lin, Bencai
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (22) : 11754 - 11761
  • [34] Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells
    Oono, Yuka
    Sounai, Atsuo
    Hori, Michio
    JOURNAL OF POWER SOURCES, 2012, 210 : 366 - 373
  • [35] High-temperature annealing improves Pt utilization of proton exchange membrane fuel cell cathode catalysts
    Li, Junjie
    Li, Zirui
    Li, Shuai
    Xu, Cong
    Li, Ang
    Tong, Lei
    Liang, Haiwei
    SCIENCE CHINA-MATERIALS, 2024, 67 (06) : 1851 - 1857
  • [36] Performance of a proton exchange membrane fuel cell stack
    Johnson, R
    Morgan, C
    Witmer, D
    Johnson, T
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (08) : 879 - 887
  • [37] Effects of temperature and humidification levels on the performance of a proton exchange membrane fuel cell
    Chiang, M-S
    Chu, H-S
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2006, 220 (A5) : 435 - 448
  • [38] Performance of a proton exchange membrane fuel cell stack
    Johnson, R.
    Morgan, C.
    Witmer, D.
    Johnson, T.
    International Journal of Non-Linear Mechanics, 2001, 36 (08) : 879 - 887
  • [39] Numerical investigation of enhanced mass transfer flow field on performance improvement of high-temperature proton exchange membrane fuel cell
    Cai, Lang
    Zhang, Jun
    Zhang, Caizhi
    Zhou, Jiaming
    Zeng, Tao
    Yi, Fengyan
    Hu, Donghai
    Zhang, Xiaosong
    FUEL CELLS, 2023, 23 (03) : 251 - 263
  • [40] Impact of Nonuniform Platinum Loading Distribution Design in the Catalyst Layer on the High-Temperature Proton Exchange Membrane Fuel Cell Performance
    Xu, Ruihang
    Deng, Xiwen
    Zhang, Enming
    Lei, Jilin
    Liu, Yi
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (02) : 427 - 437