MULTICRITICAL POINT IN THE ONE-DIMENSIONAL QUANTUM COMPASS MODEL

被引:3
|
作者
Aziziha, M. [1 ]
Motamedifar, M. [1 ]
Mahdavifar, S. [1 ]
机构
[1] Univ Guilan, Dept Phys, Rasht 413351914, Iran
来源
ACTA PHYSICA POLONICA B | 2013年 / 44卷 / 02期
关键词
Analytic expressions - Compass models - Critical exponent - Finite size scaling - Jordan-Wigner transformation - Magnetic phase diagrams - Multicritical point - Spin-spin correlation functions;
D O I
10.5506/APhysPolB.44.221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional spin-1/2 quantum compass model is considered. There is a multicritical point in the ground state magnetic phase diagram of the model. By using the Jordan-Wigner transformation the diagonalized Hamiltonian is obtained and analytic expressions for the spin spin correlation functions are determined at the multicritical point. On the other hand, the critical exponent of the energy gap in the vicinity of the multicritical point is calculated by a practical finite size scaling approach. DOI:10.5506/APhysPolB.44.221
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [41] Exact treatment of magnetism-driven ferroelectricity in the one-dimensional compass model
    You, Wen-Long
    Liu, Guang-Hua
    Horsch, Peter
    Oles, Andrzej M.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [42] One-dimensional model for the fractional quantum Hall effect
    Dyakonov, M. I.
    20TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS (HMF-20), 2013, 456
  • [43] One-dimensional model of a quantum nonlinear harmonic oscillator
    Cariñena, JF
    Rañada, MF
    Santander, M
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 285 - 293
  • [44] Perturbative study of the one-dimensional quantum clock model
    Zhang, Bingnan
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [45] Quantum entanglement in the one-dimensional anyonic Hubbard model
    Ramadas, N.
    Sreedhar, V. V.
    ANNALS OF PHYSICS, 2022, 442
  • [46] Critical quantum chaos and the one-dimensional Harper model
    Evangelou, SN
    Pichard, JL
    PHYSICAL REVIEW LETTERS, 2000, 84 (08) : 1643 - 1646
  • [47] Quantum Phase Transition in the One-Dimensional XZ Model
    Brzezicki, W.
    Oles, A. M.
    ACTA PHYSICA POLONICA A, 2009, 115 (01) : 162 - 164
  • [48] The physical interpretation of point interactions in one-dimensional relativistic quantum mechanics
    Bonin, C. A.
    Lunardi, Jose T.
    Manzoni, Luiz A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (09)
  • [49] One-dimensional quantum walks with single-point phase defects
    Zhang, Rong
    Xue, Peng
    Twamley, Jason
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [50] Anomalies in one-dimensional electron transport: quantum point contacts and wires
    Das, Mukunda P.
    Green, Frederick
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2019, 10 (01)