MULTICRITICAL POINT IN THE ONE-DIMENSIONAL QUANTUM COMPASS MODEL

被引:3
|
作者
Aziziha, M. [1 ]
Motamedifar, M. [1 ]
Mahdavifar, S. [1 ]
机构
[1] Univ Guilan, Dept Phys, Rasht 413351914, Iran
来源
ACTA PHYSICA POLONICA B | 2013年 / 44卷 / 02期
关键词
Analytic expressions - Compass models - Critical exponent - Finite size scaling - Jordan-Wigner transformation - Magnetic phase diagrams - Multicritical point - Spin-spin correlation functions;
D O I
10.5506/APhysPolB.44.221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional spin-1/2 quantum compass model is considered. There is a multicritical point in the ground state magnetic phase diagram of the model. By using the Jordan-Wigner transformation the diagonalized Hamiltonian is obtained and analytic expressions for the spin spin correlation functions are determined at the multicritical point. On the other hand, the critical exponent of the energy gap in the vicinity of the multicritical point is calculated by a practical finite size scaling approach. DOI:10.5506/APhysPolB.44.221
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [31] Semiclassical model of a one-dimensional quantum dot
    Shpatakovskaya, G. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2006, 102 (03) : 466 - 474
  • [32] Semiclassical model of a one-dimensional quantum dot
    G. V. Shpatakovskaya
    Journal of Experimental and Theoretical Physics, 2006, 102 : 466 - 474
  • [33] Quantum deformations of the one-dimensional Hubbard model
    Beisert, Niklas
    Koroteev, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (25)
  • [34] Dynamical signatures of the one-dimensional deconfined quantum critical point
    Xi, Ning
    Yu, Rong
    CHINESE PHYSICS B, 2022, 31 (05)
  • [35] Quantum signal processing with the one-dimensional quantum Ising model
    Bastidas, V. M.
    Zeytinoglu, S.
    Rossi, Z. M.
    Chuang, I. L.
    Munro, W. J.
    PHYSICAL REVIEW B, 2024, 109 (01)
  • [36] Distributional approach to point interactions in one-dimensional quantum mechanics
    Calcada, Marcos
    Lunardi, Jose T.
    Manzoni, Luiz A.
    Monteiro, Wagner
    FRONTIERS IN PHYSICS, 2014, 2 : 1 - 10
  • [37] Point interactions in one-dimensional quantum mechanics with coupled channels
    Coutinho, FAB
    Nogami, Y
    Toyama, FM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (08): : 2989 - 2997
  • [38] Dynamical signatures of the one-dimensional deconfined quantum critical point
    西宁
    俞榕
    Chinese Physics B, 2022, 31 (05) : 96 - 105
  • [39] One-dimensional frustrated plaquette compass model: Nematic phase and spontaneous multimerization
    Brzezicki, Wojciech
    Oles, Andrzej M.
    PHYSICAL REVIEW B, 2016, 93 (21)
  • [40] Critical point of the one-dimensional boson Hubbard model
    Park, S
    Park, C
    Cha, MC
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (06) : 1553 - 1556