Computing Bayes Factors From Data With Missing Values

被引:14
|
作者
Hoijtink, Herbert [1 ]
Gu, Xin [2 ]
Mulder, Doris [3 ]
Rosseel, Yves [4 ]
机构
[1] Univ Utrecht, Dept Methodol & Stat, POB 80140, NL-3508 TC Utrecht, Netherlands
[2] Univ Liverpool, Dept Geog & Planning, Liverpool, Merseyside, England
[3] Tilburg Univ, Dept Methodol & Stat, Tilburg, Netherlands
[4] Univ Ghent, Dept Data Anal, Ghent, Belgium
关键词
Bayes Factor; informative hypotheses; missing data; multiple imputation; MULTIPLE-IMPUTATION; MARGINAL LIKELIHOOD; INEQUALITY;
D O I
10.1037/met0000187
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The Bayes factor is increasingly used for the evaluation of hypotheses. These may be traditional hypotheses specified using equality constraints among the parameters of the statistical model of interest or informative hypotheses specified using equality and inequality constraints. Thus far, no attention has been given to the computation of Bayes factors from data with missing values. A key property of such a Bayes factor should be that it is only based on the information in the observed values. This article will show that such a Bayes factor can be obtained using multiple imputations of the missing values. After introduction of the general framework elaborations for Bayes factors based on default or subjective prior distributions and Bayes factors based on priors specified using training data will be given. It will be illustrated that the approach proposed can be applied using R packages for multiple imputation in combination with the Bayes factor packages Bain and BayesFactor. It will furthermore be illustrated that Bayes factors computed using a single imputation of the data are very inaccurate approximations of the correct Bayes factor.
引用
收藏
页码:253 / 268
页数:16
相关论文
共 50 条
  • [41] Variational Bayes inference for simultaneous autoregressive models with missing data
    Wijayawardhana, Anjana
    Gunawan, David
    Suesse, Thomas
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [42] Computing missing values using neural networks in medical field
    Peterkova, A.
    Nemeth, M.
    Bohm, A.
    2018 IEEE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES 2018), 2018, : 151 - 154
  • [43] Logical operators of some statistical computing packages and missing values
    Cordeiro, Jose Antonio
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 2783 - 2787
  • [44] Imputation of continuous missing values in profile data
    Yang, Luo
    Wang, Kaibo
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) : 3644 - 3662
  • [45] Imputing missing values for genetic interaction data
    Wang, Yishu
    Wang, Lin
    Yang, Dejie
    Deng, Minghua
    METHODS, 2014, 67 (03) : 269 - 277
  • [46] ESTIMATION OF MISSING VALUES FOR THE ANALYSIS OF INCOMPLETE DATA
    WILKINSON, GN
    BIOMETRICS, 1958, 14 (02) : 257 - 286
  • [47] THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES
    HARTLEY, HO
    BIOMETRIKA, 1951, 38 (3-4) : 410 - 413
  • [48] Missing values in deduplication of electronic patient data
    Sariyar, M.
    Borg, A.
    Pommerening, K.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (E1) : E76 - E82
  • [49] Treatment of missing values in process data analysis
    Imtiaz, S. A.
    Shah, S. L.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 86 (05): : 838 - 858
  • [50] Extensible algorithm for filling missing data values
    Zhou, Ji-Cheng
    Zhou, Hong-Guang
    Zhongnan Gongye Daxue Xuebao/Journal of Central South University of Technology, 2004, 35 (05): : 825 - 829