Computing Bayes Factors From Data With Missing Values

被引:14
|
作者
Hoijtink, Herbert [1 ]
Gu, Xin [2 ]
Mulder, Doris [3 ]
Rosseel, Yves [4 ]
机构
[1] Univ Utrecht, Dept Methodol & Stat, POB 80140, NL-3508 TC Utrecht, Netherlands
[2] Univ Liverpool, Dept Geog & Planning, Liverpool, Merseyside, England
[3] Tilburg Univ, Dept Methodol & Stat, Tilburg, Netherlands
[4] Univ Ghent, Dept Data Anal, Ghent, Belgium
关键词
Bayes Factor; informative hypotheses; missing data; multiple imputation; MULTIPLE-IMPUTATION; MARGINAL LIKELIHOOD; INEQUALITY;
D O I
10.1037/met0000187
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The Bayes factor is increasingly used for the evaluation of hypotheses. These may be traditional hypotheses specified using equality constraints among the parameters of the statistical model of interest or informative hypotheses specified using equality and inequality constraints. Thus far, no attention has been given to the computation of Bayes factors from data with missing values. A key property of such a Bayes factor should be that it is only based on the information in the observed values. This article will show that such a Bayes factor can be obtained using multiple imputations of the missing values. After introduction of the general framework elaborations for Bayes factors based on default or subjective prior distributions and Bayes factors based on priors specified using training data will be given. It will be illustrated that the approach proposed can be applied using R packages for multiple imputation in combination with the Bayes factor packages Bain and BayesFactor. It will furthermore be illustrated that Bayes factors computed using a single imputation of the data are very inaccurate approximations of the correct Bayes factor.
引用
收藏
页码:253 / 268
页数:16
相关论文
共 50 条
  • [31] Bayes factors vs. P-values
    Assaf, A. George
    Tsionas, Mike
    TOURISM MANAGEMENT, 2018, 67 : 17 - 31
  • [32] Test Martingales, Bayes Factors and p-Values
    Shafer, Glenn
    Shen, Alexander
    Vereshchagin, Nikolai
    Vovk, Vladimir
    STATISTICAL SCIENCE, 2011, 26 (01) : 84 - 101
  • [33] The author responds to "Evaluating p Values and Bayes Factors"
    Ioannidis, John P. A.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (04) : 389 - 390
  • [34] Greedy structure learning from data that contain systematic missing values
    Liu, Yang
    Constantinou, Anthony C.
    MACHINE LEARNING, 2022, 111 (10) : 3867 - 3896
  • [35] Greedy structure learning from data that contain systematic missing values
    Yang Liu
    Anthony C. Constantinou
    Machine Learning, 2022, 111 : 3867 - 3896
  • [36] Analysis of longitudinal data from animals with missing values using SPSS
    Duricki, Denise A.
    Soleman, Sara
    Moon, Lawrence D. F.
    NATURE PROTOCOLS, 2016, 11 (06) : 1112 - 1129
  • [37] Learning Bayesian network Classi$ers from data with missing values
    Zhang, HW
    Lu, YC
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 35 - 38
  • [38] Imputing Missing Values from Low Quality Data by NIP Tooly
    Martinez, Raquel
    Cadenas, Jose M.
    Carmen Garrido, M.
    Martinez, Alejandro
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [39] Discovery of Genuine Functional Dependencies from Relational Data with Missing Values
    Berti-Equille, Laure
    Harmouch, Nazar
    Naumann, Felix
    Novelli, Noel
    Saravanan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (08): : 880 - 892
  • [40] Analysis of longitudinal data from animals with missing values using SPSS
    Denise A Duricki
    Sara Soleman
    Lawrence D F Moon
    Nature Protocols, 2016, 11 : 1112 - 1129