Stein domains in Banach algebraic geometry

被引:12
|
作者
Bambozzi, Federico [1 ]
Ben-Bassat, Oren [2 ]
Kremnizer, Kobi [3 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Haifa, Math Inst, Dept Math, Haifa, Israel
[3] Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Stein space; Berkovich space; Bornological space; Nuclear space; ANALYTIC SPACES; COHOMOLOGY; CATEGORIES; LIMITS;
D O I
10.1016/j.jfa.2018.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we give a homological characterization of the topology of Stein spaces over any valued base field. In particular, when working over the field of complex numbers, we obtain a characterization of the usual Euclidean (transcendental) topology of complex analytic spaces. For non-Archimedean base fields the topology we characterize coincides with the topology of the Berkovich analytic space associated to a non-Archimedean Stein algebra. Because the characterization we used is borrowed from a definition in derived geometry, this work should be read as a derived perspective on analytic geometry. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1865 / 1927
页数:63
相关论文
共 50 条
  • [41] Algebraic and Complex Geometry
    ALGEBRAIC AND COMPLEX GEOMETRY, 2014, 71 : IX - XII
  • [42] Algebraic geometry II
    Nollet, Scott
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 133 - 143
  • [43] Hypercomplex algebraic geometry
    Joyce, D
    QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (194): : 129 - 162
  • [44] Universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Doklady Mathematics, 2011, 84 : 545 - 547
  • [45] ALGEBRAIC GEOMETRY AND KINEMATICS
    Husty, Manfred L.
    Schroecker, Hans-Peter
    NONLINEAR COMPUTATIONAL GEOMETRY, 2010, 151 : 85 - 107
  • [46] REAL ALGEBRAIC GEOMETRY
    WALLACE, AH
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (07): : 828 - &
  • [47] GEOMETRY OF ALGEBRAIC GROUPS
    IVERSEN, B
    ADVANCES IN MATHEMATICS, 1976, 20 (01) : 57 - 85
  • [48] Noncommutative algebraic geometry
    Laudal, OA
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (02) : 509 - 580
  • [49] RADIUS AND ALGEBRAIC GEOMETRY
    ELZEIN, F
    COMPOSITIO MATHEMATICA, 1971, 23 (04) : 379 - &
  • [50] ALGEBRAIC, GEOMETRY OF THE QUARK
    de Wet, J. A.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2005, 3 (01) : 77 - 85